MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnbgr3 Structured version   Visualization version   Unicode version

Theorem dfnbgr3 26236
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval 26234). (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 25-Oct-2020.) (Revised by AV, 21-Mar-2021.)
Hypotheses
Ref Expression
dfnbgr3.v  |-  V  =  (Vtx `  G )
dfnbgr3.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
dfnbgr3  |-  ( ( N  e.  V  /\  Fun  I )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. i  e.  dom  I { N ,  n }  C_  (
I `  i ) } )
Distinct variable groups:    n, G    i, I, n    i, N, n    n, V
Allowed substitution hints:    G( i)    V( i)

Proof of Theorem dfnbgr3
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 dfnbgr3.v . . . 4  |-  V  =  (Vtx `  G )
2 eqid 2622 . . . 4  |-  (Edg `  G )  =  (Edg
`  G )
31, 2nbgrval 26234 . . 3  |-  ( N  e.  V  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  (Edg `  G ) { N ,  n }  C_  e } )
43adantr 481 . 2  |-  ( ( N  e.  V  /\  Fun  I )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. e  e.  (Edg `  G ) { N ,  n }  C_  e } )
5 edgval 25941 . . . . . 6  |-  (Edg `  G )  =  ran  (iEdg `  G )
6 dfnbgr3.i . . . . . . . 8  |-  I  =  (iEdg `  G )
76eqcomi 2631 . . . . . . 7  |-  (iEdg `  G )  =  I
87rneqi 5352 . . . . . 6  |-  ran  (iEdg `  G )  =  ran  I
95, 8eqtri 2644 . . . . 5  |-  (Edg `  G )  =  ran  I
109rexeqi 3143 . . . 4  |-  ( E. e  e.  (Edg `  G ) { N ,  n }  C_  e  <->  E. e  e.  ran  I { N ,  n }  C_  e )
11 funfn 5918 . . . . . . 7  |-  ( Fun  I  <->  I  Fn  dom  I )
1211biimpi 206 . . . . . 6  |-  ( Fun  I  ->  I  Fn  dom  I )
1312adantl 482 . . . . 5  |-  ( ( N  e.  V  /\  Fun  I )  ->  I  Fn  dom  I )
14 sseq2 3627 . . . . . 6  |-  ( e  =  ( I `  i )  ->  ( { N ,  n }  C_  e  <->  { N ,  n }  C_  ( I `  i ) ) )
1514rexrn 6361 . . . . 5  |-  ( I  Fn  dom  I  -> 
( E. e  e. 
ran  I { N ,  n }  C_  e  <->  E. i  e.  dom  I { N ,  n }  C_  ( I `  i
) ) )
1613, 15syl 17 . . . 4  |-  ( ( N  e.  V  /\  Fun  I )  ->  ( E. e  e.  ran  I { N ,  n }  C_  e  <->  E. i  e.  dom  I { N ,  n }  C_  (
I `  i )
) )
1710, 16syl5bb 272 . . 3  |-  ( ( N  e.  V  /\  Fun  I )  ->  ( E. e  e.  (Edg `  G ) { N ,  n }  C_  e  <->  E. i  e.  dom  I { N ,  n }  C_  ( I `  i
) ) )
1817rabbidv 3189 . 2  |-  ( ( N  e.  V  /\  Fun  I )  ->  { n  e.  ( V  \  { N } )  |  E. e  e.  (Edg `  G
) { N ,  n }  C_  e }  =  { n  e.  ( V  \  { N } )  |  E. i  e.  dom  I { N ,  n }  C_  ( I `  i
) } )
194, 18eqtrd 2656 1  |-  ( ( N  e.  V  /\  Fun  I )  ->  ( G NeighbVtx  N )  =  {
n  e.  ( V 
\  { N }
)  |  E. i  e.  dom  I { N ,  n }  C_  (
I `  i ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-edg 25940  df-nbgr 26228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator