MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrnvtx0 Structured version   Visualization version   GIF version

Theorem nbgrnvtx0 26237
Description: There are no neighbors of a class which is not a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Hypothesis
Ref Expression
nbgrel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrnvtx0 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)

Proof of Theorem nbgrnvtx0
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbgrel.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 csbfv 6233 . . . . . 6 𝐺 / 𝑔(Vtx‘𝑔) = (Vtx‘𝐺)
31, 2eqtr4i 2647 . . . . 5 𝑉 = 𝐺 / 𝑔(Vtx‘𝑔)
4 neleq2 2903 . . . . 5 (𝑉 = 𝐺 / 𝑔(Vtx‘𝑔) → (𝑁𝑉𝑁𝐺 / 𝑔(Vtx‘𝑔)))
53, 4ax-mp 5 . . . 4 (𝑁𝑉𝑁𝐺 / 𝑔(Vtx‘𝑔))
65biimpi 206 . . 3 (𝑁𝑉𝑁𝐺 / 𝑔(Vtx‘𝑔))
76olcd 408 . 2 (𝑁𝑉 → (𝐺 ∉ V ∨ 𝑁𝐺 / 𝑔(Vtx‘𝑔)))
8 df-nbgr 26228 . . 3 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
98mpt2xneldm 7338 . 2 ((𝐺 ∉ V ∨ 𝑁𝐺 / 𝑔(Vtx‘𝑔)) → (𝐺 NeighbVtx 𝑁) = ∅)
107, 9syl 17 1 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383   = wceq 1483  wnel 2897  wrex 2913  {crab 2916  Vcvv 3200  csb 3533  cdif 3571  wss 3574  c0 3915  {csn 4177  {cpr 4179  cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-nbgr 26228
This theorem is referenced by:  nbuhgr  26239  nbumgr  26243  nbgr0vtxlem  26251  nbgr1vtx  26254
  Copyright terms: Public domain W3C validator