Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelval Structured version   Visualization version   GIF version

Theorem diaelval 36322
Description: Member of the partial isomorphism A for a lattice 𝐾. (Contributed by NM, 3-Dec-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
diaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diaval.r 𝑅 = ((trL‘𝐾)‘𝑊)
diaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaelval (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))

Proof of Theorem diaelval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 diaval.b . . . 4 𝐵 = (Base‘𝐾)
2 diaval.l . . . 4 = (le‘𝐾)
3 diaval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 diaval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 diaval.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
6 diaval.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diaval 36321 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑋})
87eleq2d 2687 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ 𝐹 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑋}))
9 fveq2 6191 . . . 4 (𝑓 = 𝐹 → (𝑅𝑓) = (𝑅𝐹))
109breq1d 4663 . . 3 (𝑓 = 𝐹 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝐹) 𝑋))
1110elrab 3363 . 2 (𝐹 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑋} ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋))
128, 11syl6bb 276 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  DIsoAcdia 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-disoa 36318
This theorem is referenced by:  dian0  36328  diatrl  36333  dialss  36335  diaglbN  36344  dibelval3  36436  dibopelval3  36437  diblss  36459
  Copyright terms: Public domain W3C validator