![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dian0 | Structured version Visualization version GIF version |
Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014.) |
Ref | Expression |
---|---|
dian0.b | ⊢ 𝐵 = (Base‘𝐾) |
dian0.l | ⊢ ≤ = (le‘𝐾) |
dian0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dian0.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dian0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dian0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dian0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2622 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | idltrn 35436 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
5 | 4 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
6 | eqid 2622 | . . . . . 6 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
7 | eqid 2622 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
8 | 1, 6, 2, 7 | trlid0 35463 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
9 | 8 | adantr 481 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) = (0.‘𝐾)) |
10 | hlatl 34647 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ AtLat) |
12 | simpl 473 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → 𝑋 ∈ 𝐵) | |
13 | dian0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
14 | 1, 13, 6 | atl0le 34591 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (0.‘𝐾) ≤ 𝑋) |
15 | 11, 12, 14 | syl2an 494 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (0.‘𝐾) ≤ 𝑋) |
16 | 9, 15 | eqbrtrd 4675 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋) |
17 | dian0.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
18 | 1, 13, 2, 3, 7, 17 | diaelval 36322 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (( I ↾ 𝐵) ∈ (𝐼‘𝑋) ↔ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘( I ↾ 𝐵)) ≤ 𝑋))) |
19 | 5, 16, 18 | mpbir2and 957 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ( I ↾ 𝐵) ∈ (𝐼‘𝑋)) |
20 | ne0i 3921 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝐼‘𝑋) → (𝐼‘𝑋) ≠ ∅) | |
21 | 19, 20 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 class class class wbr 4653 I cid 5023 ↾ cres 5116 ‘cfv 5888 Basecbs 15857 lecple 15948 0.cp0 17037 AtLatcal 34551 HLchlt 34637 LHypclh 35270 LTrncltrn 35387 trLctrl 35445 DIsoAcdia 36317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-disoa 36318 |
This theorem is referenced by: dialss 36335 dibn0 36442 |
Copyright terms: Public domain | W3C validator |