Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblss Structured version   Visualization version   GIF version

Theorem diblss 36459
Description: The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.)
Hypotheses
Ref Expression
diblss.b 𝐵 = (Base‘𝐾)
diblss.l = (le‘𝐾)
diblss.h 𝐻 = (LHyp‘𝐾)
diblss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblss.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diblss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem diblss
Dummy variables 𝑎 𝑏 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈))
2 diblss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2622 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 diblss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2622 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2622 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
72, 3, 4, 5, 6dvhbase 36372 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
87eqcomd 2628 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
98adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
10 eqid 2622 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 eqid 2622 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
122, 10, 3, 4, 11dvhvbase 36376 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1312eqcomd 2628 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1413adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
15 eqidd 2623 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (+g𝑈) = (+g𝑈))
16 eqidd 2623 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( ·𝑠𝑈) = ( ·𝑠𝑈))
17 diblss.s . . 3 𝑆 = (LSubSp‘𝑈)
1817a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑆 = (LSubSp‘𝑈))
19 diblss.b . . . 4 𝐵 = (Base‘𝐾)
20 diblss.l . . . 4 = (le‘𝐾)
21 diblss.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
2219, 20, 2, 21, 4, 11dibss 36458 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (Base‘𝑈))
2322, 14sseqtr4d 3642 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 20, 2, 21dibn0 36442 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
25 fvex 6201 . . . . . . 7 (𝑥‘(1st𝑎)) ∈ V
26 vex 3203 . . . . . . . 8 𝑥 ∈ V
27 fvex 6201 . . . . . . . 8 (2nd𝑎) ∈ V
2826, 27coex 7118 . . . . . . 7 (𝑥 ∘ (2nd𝑎)) ∈ V
2925, 28op1st 7176 . . . . . 6 (1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥‘(1st𝑎))
3029coeq1i 5281 . . . . 5 ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) = ((𝑥‘(1st𝑎)) ∘ (1st𝑏))
31 simpll 790 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpr1 1067 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
33 simplr 792 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑋𝐵𝑋 𝑊))
34 simpr2 1068 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (𝐼𝑋))
3519, 20, 2, 10, 21dibelval1st1 36439 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
3631, 33, 34, 35syl3anc 1326 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
372, 10, 3tendocl 36055 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
3831, 32, 36, 37syl3anc 1326 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
39 simpr3 1069 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (𝐼𝑋))
4019, 20, 2, 10, 21dibelval1st1 36439 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
4131, 33, 39, 40syl3anc 1326 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
422, 10ltrnco 36007 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
4331, 38, 41, 42syl3anc 1326 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
44 simplll 798 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ HL)
45 hllat 34650 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4644, 45syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ Lat)
47 eqid 2622 . . . . . . . . 9 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
4819, 2, 10, 47trlcl 35451 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4931, 43, 48syl2anc 693 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
5019, 2, 10, 47trlcl 35451 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5131, 38, 50syl2anc 693 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5219, 2, 10, 47trlcl 35451 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
5331, 41, 52syl2anc 693 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
54 eqid 2622 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
5519, 54latjcl 17051 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
5646, 51, 53, 55syl3anc 1326 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
57 simplrl 800 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑋𝐵)
5820, 54, 2, 10, 47trlco 36015 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5931, 38, 41, 58syl3anc 1326 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
6019, 2, 10, 47trlcl 35451 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6131, 36, 60syl2anc 693 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6220, 2, 10, 47, 3tendotp 36049 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
6331, 32, 36, 62syl3anc 1326 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
64 eqid 2622 . . . . . . . . . . . 12 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
6519, 20, 2, 64, 21dibelval1st 36438 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6631, 33, 34, 65syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6719, 20, 2, 10, 47, 64diatrl 36333 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6831, 33, 66, 67syl3anc 1326 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6919, 20, 46, 51, 61, 57, 63, 68lattrd 17058 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋)
7019, 20, 2, 64, 21dibelval1st 36438 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7131, 33, 39, 70syl3anc 1326 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7219, 20, 2, 10, 47, 64diatrl 36333 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7331, 33, 71, 72syl3anc 1326 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7419, 20, 54latjle12 17062 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵𝑋𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7546, 51, 53, 57, 74syl13anc 1328 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7669, 73, 75mpbi2and 956 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋)
7719, 20, 46, 49, 56, 57, 59, 76lattrd 17058 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)
7819, 20, 2, 10, 47, 64diaelval 36322 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7978adantr 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
8043, 77, 79mpbir2and 957 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
8130, 80syl5eqel 2705 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
82 eqid 2622 . . . . . . . . 9 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))
83 eqid 2622 . . . . . . . . 9 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
842, 10, 3, 4, 5, 82, 83dvhfplusr 36373 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8584ad2antrr 762 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8625, 28op2nd 7177 . . . . . . . 8 (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥 ∘ (2nd𝑎))
87 eqid 2622 . . . . . . . . . . . 12 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
8819, 20, 2, 10, 87, 21dibelval2nd 36441 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8931, 33, 34, 88syl3anc 1326 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9089coeq2d 5284 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
9119, 2, 10, 3, 87tendo0mulr 36115 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9231, 32, 91syl2anc 693 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9390, 92eqtrd 2656 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9486, 93syl5eq 2668 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9519, 20, 2, 10, 87, 21dibelval2nd 36441 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9631, 33, 39, 95syl3anc 1326 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9785, 94, 96oveq123d 6671 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
98 simpllr 799 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑊𝐻)
9919, 2, 10, 3, 87tendo0cl 36078 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
10099ad2antrr 762 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
10119, 2, 10, 3, 87, 82tendo0pl 36079 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10244, 98, 100, 101syl21anc 1325 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10397, 102eqtrd 2656 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
104 ovex 6678 . . . . . 6 ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ V
105104elsn 4192 . . . . 5 (((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ↔ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
106103, 105sylibr 224 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})
107 opelxpi 5148 . . . 4 ((((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10881, 106, 107syl2anc 693 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10923adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
110109, 34sseldd 3604 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
111 eqid 2622 . . . . . . 7 ( ·𝑠𝑈) = ( ·𝑠𝑈)
1122, 10, 3, 4, 111dvhvsca 36390 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
11331, 32, 110, 112syl12anc 1324 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
114113oveq1d 6665 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏))
11589, 100eqeltrd 2701 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊))
1162, 3tendococl 36060 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
11731, 32, 115, 116syl3anc 1326 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
118 opelxpi 5148 . . . . . 6 (((𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
11938, 117, 118syl2anc 693 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
120109, 39sseldd 3604 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
121 eqid 2622 . . . . . 6 (+g𝑈) = (+g𝑈)
1222, 10, 3, 4, 5, 121, 83dvhvadd 36381 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12331, 119, 120, 122syl12anc 1324 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
124114, 123eqtrd 2656 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12519, 20, 2, 10, 87, 64, 21dibval2 36433 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
126125adantr 481 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
127108, 124, 1263eltr4d 2716 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑋))
1281, 9, 14, 15, 16, 18, 23, 24, 127islssd 18936 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  {csn 4177  cop 4183   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  cres 5116  ccom 5118  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  lecple 15948  joincjn 16944  Latclat 17045  LSubSpclss 18932  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  TEndoctendo 36040  DIsoAcdia 36317  DVecHcdvh 36367  DIsoBcdib 36427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-lss 18933  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-disoa 36318  df-dvech 36368  df-dib 36428
This theorem is referenced by:  diblsmopel  36460  cdlemn5pre  36489  cdlemn11c  36498  dihjustlem  36505  dihord1  36507  dihord2a  36508  dihord2b  36509  dihord11c  36513  dihlsscpre  36523  dihopelvalcpre  36537  dihlss  36539  dihord6apre  36545  dihord5b  36548  dihord5apre  36551
  Copyright terms: Public domain W3C validator