Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diameetN Structured version   Visualization version   GIF version

Theorem diameetN 36345
Description: Partial isomorphism A of a lattice meet. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diam.m = (meet‘𝐾)
diam.h 𝐻 = (LHyp‘𝐾)
diam.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diameetN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem diameetN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4 (glb‘𝐾) = (glb‘𝐾)
2 diam.m . . . 4 = (meet‘𝐾)
3 simpll 790 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ HL)
4 eqid 2622 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 diam.h . . . . . 6 𝐻 = (LHyp‘𝐾)
6 diam.i . . . . . 6 𝐼 = ((DIsoA‘𝐾)‘𝑊)
74, 5, 6diadmclN 36326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
87adantrr 753 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋 ∈ (Base‘𝐾))
94, 5, 6diadmclN 36326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌 ∈ (Base‘𝐾))
109adantrl 752 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌 ∈ (Base‘𝐾))
111, 2, 3, 8, 10meetval 17019 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
1211fveq2d 6195 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})))
13 simpl 473 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 prssi 4353 . . . 4 ((𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼) → {𝑋, 𝑌} ⊆ dom 𝐼)
1514adantl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → {𝑋, 𝑌} ⊆ dom 𝐼)
16 prnzg 4311 . . . 4 (𝑋 ∈ dom 𝐼 → {𝑋, 𝑌} ≠ ∅)
1716ad2antrl 764 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → {𝑋, 𝑌} ≠ ∅)
181, 5, 6diaglbN 36344 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑋, 𝑌} ⊆ dom 𝐼 ∧ {𝑋, 𝑌} ≠ ∅)) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
1913, 15, 17, 18syl12anc 1324 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
20 fveq2 6191 . . . 4 (𝑥 = 𝑋 → (𝐼𝑥) = (𝐼𝑋))
21 fveq2 6191 . . . 4 (𝑥 = 𝑌 → (𝐼𝑥) = (𝐼𝑌))
2220, 21iinxprg 4601 . . 3 ((𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
2322adantl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
2412, 19, 233eqtrd 2660 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  c0 3915  {cpr 4179   ciin 4521  dom cdm 5114  cfv 5888  (class class class)co 6650  Basecbs 15857  glbcglb 16943  meetcmee 16945  HLchlt 34637  LHypclh 35270  DIsoAcdia 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-disoa 36318
This theorem is referenced by:  diainN  36346  djajN  36426
  Copyright terms: Public domain W3C validator