Step | Hyp | Ref
| Expression |
1 | | dmatALTval.d |
. 2
⊢ 𝐷 = (𝑁 DMatALT 𝑅) |
2 | | ovexd 6680 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) ∈ V) |
3 | | id 22 |
. . . . . . 7
⊢ (𝑎 = (𝑛 Mat 𝑟) → 𝑎 = (𝑛 Mat 𝑟)) |
4 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑎 = (𝑛 Mat 𝑟) → (Base‘𝑎) = (Base‘(𝑛 Mat 𝑟))) |
5 | | rabeq 3192 |
. . . . . . . 8
⊢
((Base‘𝑎) =
(Base‘(𝑛 Mat 𝑟)) → {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
6 | 4, 5 | syl 17 |
. . . . . . 7
⊢ (𝑎 = (𝑛 Mat 𝑟) → {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
7 | 3, 6 | oveq12d 6668 |
. . . . . 6
⊢ (𝑎 = (𝑛 Mat 𝑟) → (𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
8 | 7 | adantl 482 |
. . . . 5
⊢ (((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) ∧ 𝑎 = (𝑛 Mat 𝑟)) → (𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
9 | 2, 8 | csbied 3560 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
10 | | oveq12 6659 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) |
11 | | dmatALTval.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
12 | 10, 11 | syl6eqr 2674 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴) |
13 | 12 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴)) |
14 | | dmatALTval.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
15 | 13, 14 | syl6eqr 2674 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵) |
16 | | simpl 473 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
17 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
18 | | dmatALTval.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑅) |
19 | 17, 18 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
20 | 19 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (0g‘𝑟) = 0 ) |
21 | 20 | eqeq2d 2632 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑖𝑚𝑗) = (0g‘𝑟) ↔ (𝑖𝑚𝑗) = 0 )) |
22 | 21 | imbi2d 330 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
23 | 16, 22 | raleqbidv 3152 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
24 | 16, 23 | raleqbidv 3152 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
25 | 15, 24 | rabeqbidv 3195 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
26 | 12, 25 | oveq12d 6668 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
27 | 9, 26 | eqtrd 2656 |
. . 3
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
28 | | df-dmatalt 42187 |
. . 3
⊢ DMatALT
= (𝑛 ∈ Fin, 𝑟 ∈ V ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
29 | | ovex 6678 |
. . 3
⊢ (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) ∈
V |
30 | 27, 28, 29 | ovmpt2a 6791 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 DMatALT 𝑅) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
31 | 1, 30 | syl5eq 2668 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |