MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr Structured version   Visualization version   GIF version

Theorem dvdsr 18646
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsr (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . . 4 = (∥r𝑅)
21reldvdsr 18644 . . 3 Rel
3 brrelex12 5155 . . 3 ((Rel 𝑋 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
42, 3mpan 706 . 2 (𝑋 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
5 elex 3212 . . 3 (𝑋𝐵𝑋 ∈ V)
6 id 22 . . . . 5 ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌)
7 ovex 6678 . . . . 5 (𝑧 · 𝑋) ∈ V
86, 7syl6eqelr 2710 . . . 4 ((𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
98rexlimivw 3029 . . 3 (∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
105, 9anim12i 590 . 2 ((𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
11 simpl 473 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1211eleq1d 2686 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐵𝑋𝐵))
1311oveq2d 6666 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋))
14 simpr 477 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1513, 14eqeq12d 2637 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌))
1615rexbidv 3052 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
1712, 16anbi12d 747 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
18 dvdsr.1 . . . 4 𝐵 = (Base‘𝑅)
19 dvdsr.3 . . . 4 · = (.r𝑅)
2018, 1, 19dvdsrval 18645 . . 3 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
2117, 20brabga 4989 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
224, 10, 21pm5.21nii 368 1 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200   class class class wbr 4653  Rel wrel 5119  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  rcdsr 18638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-dvdsr 18641
This theorem is referenced by:  dvdsr2  18647  dvdsrmul  18648  dvdsrcl  18649  dvdsrcl2  18650  dvdsrtr  18652  dvdsrmul1  18653  opprunit  18661  crngunit  18662  subrgdvds  18794  rhmdvdsr  29818
  Copyright terms: Public domain W3C validator