HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eleigvec Structured version   Visualization version   Unicode version

Theorem eleigvec 28816
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
eleigvec  |-  ( T : ~H --> ~H  ->  ( A  e.  ( eigvec `  T )  <->  ( A  e.  ~H  /\  A  =/= 
0h  /\  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) ) ) )
Distinct variable groups:    x, A    x, T

Proof of Theorem eleigvec
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eigvecval 28755 . . 3  |-  ( T : ~H --> ~H  ->  (
eigvec `  T )  =  { y  e.  ( ~H  \  0H )  |  E. x  e.  CC  ( T `  y )  =  ( x  .h  y ) } )
21eleq2d 2687 . 2  |-  ( T : ~H --> ~H  ->  ( A  e.  ( eigvec `  T )  <->  A  e.  { y  e.  ( ~H 
\  0H )  |  E. x  e.  CC  ( T `  y )  =  ( x  .h  y ) } ) )
3 eldif 3584 . . . . 5  |-  ( A  e.  ( ~H  \  0H )  <->  ( A  e. 
~H  /\  -.  A  e.  0H ) )
4 elch0 28111 . . . . . . 7  |-  ( A  e.  0H  <->  A  =  0h )
54necon3bbii 2841 . . . . . 6  |-  ( -.  A  e.  0H  <->  A  =/=  0h )
65anbi2i 730 . . . . 5  |-  ( ( A  e.  ~H  /\  -.  A  e.  0H ) 
<->  ( A  e.  ~H  /\  A  =/=  0h )
)
73, 6bitri 264 . . . 4  |-  ( A  e.  ( ~H  \  0H )  <->  ( A  e. 
~H  /\  A  =/=  0h ) )
87anbi1i 731 . . 3  |-  ( ( A  e.  ( ~H 
\  0H )  /\  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) )  <->  ( ( A  e.  ~H  /\  A  =/=  0h )  /\  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) ) )
9 fveq2 6191 . . . . . 6  |-  ( y  =  A  ->  ( T `  y )  =  ( T `  A ) )
10 oveq2 6658 . . . . . 6  |-  ( y  =  A  ->  (
x  .h  y )  =  ( x  .h  A ) )
119, 10eqeq12d 2637 . . . . 5  |-  ( y  =  A  ->  (
( T `  y
)  =  ( x  .h  y )  <->  ( T `  A )  =  ( x  .h  A ) ) )
1211rexbidv 3052 . . . 4  |-  ( y  =  A  ->  ( E. x  e.  CC  ( T `  y )  =  ( x  .h  y )  <->  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) ) )
1312elrab 3363 . . 3  |-  ( A  e.  { y  e.  ( ~H  \  0H )  |  E. x  e.  CC  ( T `  y )  =  ( x  .h  y ) }  <->  ( A  e.  ( ~H  \  0H )  /\  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) ) )
14 df-3an 1039 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h  /\  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) )  <->  ( ( A  e.  ~H  /\  A  =/=  0h )  /\  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) ) )
158, 13, 143bitr4i 292 . 2  |-  ( A  e.  { y  e.  ( ~H  \  0H )  |  E. x  e.  CC  ( T `  y )  =  ( x  .h  y ) }  <->  ( A  e. 
~H  /\  A  =/=  0h 
/\  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) ) )
162, 15syl6bb 276 1  |-  ( T : ~H --> ~H  ->  ( A  e.  ( eigvec `  T )  <->  ( A  e.  ~H  /\  A  =/= 
0h  /\  E. x  e.  CC  ( T `  A )  =  ( x  .h  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   ~Hchil 27776    .h csm 27778   0hc0v 27781   0Hc0h 27792   eigveccei 27816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856  ax-hv0cl 27860
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ch0 28110  df-eigvec 28712
This theorem is referenced by:  eleigvec2  28817  eigvalcl  28820
  Copyright terms: Public domain W3C validator