Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmnc Structured version   Visualization version   GIF version

Theorem elmnc 37706
Description: Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
elmnc (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))

Proof of Theorem elmnc
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnc 37703 . . . . 5 Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
21dmmptss 5631 . . . 4 dom Monic ⊆ 𝒫 ℂ
3 elfvdm 6220 . . . 4 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ dom Monic )
42, 3sseldi 3601 . . 3 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
54elpwid 4170 . 2 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ⊆ ℂ)
6 plybss 23950 . . 3 (𝑃 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
76adantr 481 . 2 ((𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1) → 𝑆 ⊆ ℂ)
8 cnex 10017 . . . . . 6 ℂ ∈ V
98elpw2 4828 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
10 fveq2 6191 . . . . . . 7 (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆))
11 rabeq 3192 . . . . . . 7 ((Poly‘𝑠) = (Poly‘𝑆) → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1210, 11syl 17 . . . . . 6 (𝑠 = 𝑆 → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
13 fvex 6201 . . . . . . 7 (Poly‘𝑆) ∈ V
1413rabex 4813 . . . . . 6 {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ∈ V
1512, 1, 14fvmpt 6282 . . . . 5 (𝑆 ∈ 𝒫 ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
169, 15sylbir 225 . . . 4 (𝑆 ⊆ ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1716eleq2d 2687 . . 3 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ 𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}))
18 fveq2 6191 . . . . . 6 (𝑝 = 𝑃 → (coeff‘𝑝) = (coeff‘𝑃))
19 fveq2 6191 . . . . . 6 (𝑝 = 𝑃 → (deg‘𝑝) = (deg‘𝑃))
2018, 19fveq12d 6197 . . . . 5 (𝑝 = 𝑃 → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑃)‘(deg‘𝑃)))
2120eqeq1d 2624 . . . 4 (𝑝 = 𝑃 → (((coeff‘𝑝)‘(deg‘𝑝)) = 1 ↔ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2221elrab 3363 . . 3 (𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2317, 22syl6bb 276 . 2 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)))
245, 7, 23pm5.21nii 368 1 (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  wss 3574  𝒫 cpw 4158  dom cdm 5114  cfv 5888  cc 9934  1c1 9937  Polycply 23940  coeffccoe 23942  degcdgr 23943   Monic cmnc 37701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ply 23944  df-mnc 37703
This theorem is referenced by:  mncply  37707  mnccoe  37708
  Copyright terms: Public domain W3C validator