Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmnc Structured version   Visualization version   Unicode version

Theorem elmnc 37706
Description: Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
elmnc  |-  ( P  e.  (  Monic  `  S
)  <->  ( P  e.  (Poly `  S )  /\  ( (coeff `  P
) `  (deg `  P
) )  =  1 ) )

Proof of Theorem elmnc
Dummy variables  s  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnc 37703 . . . . 5  |-  Monic  =  ( s  e.  ~P CC  |->  { p  e.  (Poly `  s )  |  ( (coeff `  p ) `  (deg `  p )
)  =  1 } )
21dmmptss 5631 . . . 4  |-  dom  Monic  C_ 
~P CC
3 elfvdm 6220 . . . 4  |-  ( P  e.  (  Monic  `  S
)  ->  S  e.  dom  Monic  )
42, 3sseldi 3601 . . 3  |-  ( P  e.  (  Monic  `  S
)  ->  S  e.  ~P CC )
54elpwid 4170 . 2  |-  ( P  e.  (  Monic  `  S
)  ->  S  C_  CC )
6 plybss 23950 . . 3  |-  ( P  e.  (Poly `  S
)  ->  S  C_  CC )
76adantr 481 . 2  |-  ( ( P  e.  (Poly `  S )  /\  (
(coeff `  P ) `  (deg `  P )
)  =  1 )  ->  S  C_  CC )
8 cnex 10017 . . . . . 6  |-  CC  e.  _V
98elpw2 4828 . . . . 5  |-  ( S  e.  ~P CC  <->  S  C_  CC )
10 fveq2 6191 . . . . . . 7  |-  ( s  =  S  ->  (Poly `  s )  =  (Poly `  S ) )
11 rabeq 3192 . . . . . . 7  |-  ( (Poly `  s )  =  (Poly `  S )  ->  { p  e.  (Poly `  s )  |  ( (coeff `  p ) `  (deg `  p ) )  =  1 }  =  {
p  e.  (Poly `  S )  |  ( (coeff `  p ) `  (deg `  p )
)  =  1 } )
1210, 11syl 17 . . . . . 6  |-  ( s  =  S  ->  { p  e.  (Poly `  s )  |  ( (coeff `  p ) `  (deg `  p ) )  =  1 }  =  {
p  e.  (Poly `  S )  |  ( (coeff `  p ) `  (deg `  p )
)  =  1 } )
13 fvex 6201 . . . . . . 7  |-  (Poly `  S )  e.  _V
1413rabex 4813 . . . . . 6  |-  { p  e.  (Poly `  S )  |  ( (coeff `  p ) `  (deg `  p ) )  =  1 }  e.  _V
1512, 1, 14fvmpt 6282 . . . . 5  |-  ( S  e.  ~P CC  ->  ( 
Monic  `  S )  =  { p  e.  (Poly `  S )  |  ( (coeff `  p ) `  (deg `  p )
)  =  1 } )
169, 15sylbir 225 . . . 4  |-  ( S 
C_  CC  ->  (  Monic  `  S )  =  {
p  e.  (Poly `  S )  |  ( (coeff `  p ) `  (deg `  p )
)  =  1 } )
1716eleq2d 2687 . . 3  |-  ( S 
C_  CC  ->  ( P  e.  (  Monic  `  S
)  <->  P  e.  { p  e.  (Poly `  S )  |  ( (coeff `  p ) `  (deg `  p ) )  =  1 } ) )
18 fveq2 6191 . . . . . 6  |-  ( p  =  P  ->  (coeff `  p )  =  (coeff `  P ) )
19 fveq2 6191 . . . . . 6  |-  ( p  =  P  ->  (deg `  p )  =  (deg
`  P ) )
2018, 19fveq12d 6197 . . . . 5  |-  ( p  =  P  ->  (
(coeff `  p ) `  (deg `  p )
)  =  ( (coeff `  P ) `  (deg `  P ) ) )
2120eqeq1d 2624 . . . 4  |-  ( p  =  P  ->  (
( (coeff `  p
) `  (deg `  p
) )  =  1  <-> 
( (coeff `  P
) `  (deg `  P
) )  =  1 ) )
2221elrab 3363 . . 3  |-  ( P  e.  { p  e.  (Poly `  S )  |  ( (coeff `  p ) `  (deg `  p ) )  =  1 }  <->  ( P  e.  (Poly `  S )  /\  ( (coeff `  P
) `  (deg `  P
) )  =  1 ) )
2317, 22syl6bb 276 . 2  |-  ( S 
C_  CC  ->  ( P  e.  (  Monic  `  S
)  <->  ( P  e.  (Poly `  S )  /\  ( (coeff `  P
) `  (deg `  P
) )  =  1 ) ) )
245, 7, 23pm5.21nii 368 1  |-  ( P  e.  (  Monic  `  S
)  <->  ( P  e.  (Poly `  S )  /\  ( (coeff `  P
) `  (deg `  P
) )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ~Pcpw 4158   dom cdm 5114   ` cfv 5888   CCcc 9934   1c1 9937  Polycply 23940  coeffccoe 23942  degcdgr 23943    Monic cmnc 37701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ply 23944  df-mnc 37703
This theorem is referenced by:  mncply  37707  mnccoe  37708
  Copyright terms: Public domain W3C validator