Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddat Structured version   Visualization version   GIF version

Theorem elpaddat 35090
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddat (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝   ,𝑝   ,𝑝   𝑆,𝑝   𝑄,𝑝
Allowed substitution hint:   + (𝑝)

Proof of Theorem elpaddat
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝐾 ∈ Lat)
2 simpl2 1065 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑋𝐴)
3 simpl3 1066 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑄𝐴)
43snssd 4340 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ⊆ 𝐴)
5 simpr 477 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6 snnzg 4308 . . . 4 (𝑄𝐴 → {𝑄} ≠ ∅)
73, 6syl 17 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ≠ ∅)
8 paddfval.l . . . 4 = (le‘𝐾)
9 paddfval.j . . . 4 = (join‘𝐾)
10 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
11 paddfval.p . . . 4 + = (+𝑃𝐾)
128, 9, 10, 11elpaddn0 35086 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ {𝑄} ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ {𝑄} ≠ ∅)) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟))))
131, 2, 4, 5, 7, 12syl32anc 1334 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟))))
14 oveq2 6658 . . . . . . 7 (𝑟 = 𝑄 → (𝑝 𝑟) = (𝑝 𝑄))
1514breq2d 4665 . . . . . 6 (𝑟 = 𝑄 → (𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
1615rexsng 4219 . . . . 5 (𝑄𝐴 → (∃𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
173, 16syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ 𝑆 (𝑝 𝑄)))
1817rexbidv 3052 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟) ↔ ∃𝑝𝑋 𝑆 (𝑝 𝑄)))
1918anbi2d 740 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → ((𝑆𝐴 ∧ ∃𝑝𝑋𝑟 ∈ {𝑄}𝑆 (𝑝 𝑟)) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
2013, 19bitrd 268 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆𝐴 ∧ ∃𝑝𝑋 𝑆 (𝑝 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  lecple 15948  joincjn 16944  Latclat 17045  Atomscatm 34550  +𝑃cpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lub 16974  df-join 16976  df-lat 17046  df-ats 34554  df-padd 35082
This theorem is referenced by:  elpaddatiN  35091  elpadd2at  35092  pclfinclN  35236
  Copyright terms: Public domain W3C validator