Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinclN Structured version   Visualization version   GIF version

Theorem pclfinclN 35236
Description: The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 35186 and also pclcmpatN 35187. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfincl.a 𝐴 = (Atoms‘𝐾)
pclfincl.c 𝑈 = (PCl‘𝐾)
pclfincl.s 𝑆 = (PSubCl‘𝐾)
Assertion
Ref Expression
pclfinclN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)

Proof of Theorem pclfinclN
Dummy variables 𝑞 𝑝 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3626 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
21anbi2d 740 . . . . 5 (𝑥 = ∅ → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ ∅ ⊆ 𝐴)))
3 fveq2 6191 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = (𝑈‘∅))
43eleq1d 2686 . . . . 5 (𝑥 = ∅ → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘∅) ∈ 𝑆))
52, 4imbi12d 334 . . . 4 (𝑥 = ∅ → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)))
6 sseq1 3626 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
76anbi2d 740 . . . . 5 (𝑥 = 𝑦 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑦𝐴)))
8 fveq2 6191 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98eleq1d 2686 . . . . 5 (𝑥 = 𝑦 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑦) ∈ 𝑆))
107, 9imbi12d 334 . . . 4 (𝑥 = 𝑦 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)))
11 sseq1 3626 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1211anbi2d 740 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
13 fveq2 6191 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑈𝑥) = (𝑈‘(𝑦 ∪ {𝑧})))
1413eleq1d 2686 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
1512, 14imbi12d 334 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
16 sseq1 3626 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
1716anbi2d 740 . . . . 5 (𝑥 = 𝑋 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑋𝐴)))
18 fveq2 6191 . . . . . 6 (𝑥 = 𝑋 → (𝑈𝑥) = (𝑈𝑋))
1918eleq1d 2686 . . . . 5 (𝑥 = 𝑋 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑋) ∈ 𝑆))
2017, 19imbi12d 334 . . . 4 (𝑥 = 𝑋 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)))
21 pclfincl.c . . . . . . 7 𝑈 = (PCl‘𝐾)
2221pcl0N 35208 . . . . . 6 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
23 pclfincl.s . . . . . . 7 𝑆 = (PSubCl‘𝐾)
24230psubclN 35229 . . . . . 6 (𝐾 ∈ HL → ∅ ∈ 𝑆)
2522, 24eqeltrd 2701 . . . . 5 (𝐾 ∈ HL → (𝑈‘∅) ∈ 𝑆)
2625adantr 481 . . . 4 ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)
27 anass 681 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)))
28 vex 3203 . . . . . . . . . . 11 𝑧 ∈ V
2928snss 4316 . . . . . . . . . 10 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
3029anbi2i 730 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) ↔ (𝑦𝐴 ∧ {𝑧} ⊆ 𝐴))
31 unss 3787 . . . . . . . . 9 ((𝑦𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3230, 31bitri 264 . . . . . . . 8 ((𝑦𝐴𝑧𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3332anbi2i 730 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
3427, 33bitr2i 265 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴))
35 simpllr 799 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 = ∅)
3635uneq1d 3766 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = (∅ ∪ {𝑧}))
37 uncom 3757 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑧}) = ({𝑧} ∪ ∅)
38 un0 3967 . . . . . . . . . . . . . . 15 ({𝑧} ∪ ∅) = {𝑧}
3937, 38eqtri 2644 . . . . . . . . . . . . . 14 (∅ ∪ {𝑧}) = {𝑧}
4036, 39syl6eq 2672 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = {𝑧})
4140fveq2d 6195 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = (𝑈‘{𝑧}))
42 simplrl 800 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
43 hlatl 34647 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4442, 43syl 17 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ AtLat)
45 simprr 796 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
46 pclfincl.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
47 eqid 2622 . . . . . . . . . . . . . . 15 (PSubSp‘𝐾) = (PSubSp‘𝐾)
4846, 47snatpsubN 35036 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑧𝐴) → {𝑧} ∈ (PSubSp‘𝐾))
4944, 45, 48syl2anc 693 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ (PSubSp‘𝐾))
5047, 21pclidN 35182 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ {𝑧} ∈ (PSubSp‘𝐾)) → (𝑈‘{𝑧}) = {𝑧})
5142, 49, 50syl2anc 693 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘{𝑧}) = {𝑧})
5241, 51eqtrd 2656 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = {𝑧})
5346, 23atpsubclN 35231 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧𝐴) → {𝑧} ∈ 𝑆)
5442, 45, 53syl2anc 693 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ 𝑆)
5552, 54eqeltrd 2701 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
5655exp43 640 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 = ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
57 simplrl 800 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
5846, 21pclssidN 35181 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦𝐴) → 𝑦 ⊆ (𝑈𝑦))
5958ad2antlr 763 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ⊆ (𝑈𝑦))
60 unss1 3782 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑈𝑦) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
62 simprl 794 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ∈ 𝑆)
6346, 23psubclssatN 35227 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆) → (𝑈𝑦) ⊆ 𝐴)
6457, 62, 63syl2anc 693 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ⊆ 𝐴)
65 snssi 4339 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
6665ad2antll 765 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ⊆ 𝐴)
67 eqid 2622 . . . . . . . . . . . . . . . . 17 (+𝑃𝐾) = (+𝑃𝐾)
6846, 67paddunssN 35094 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
6957, 64, 66, 68syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7061, 69sstrd 3613 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7146, 67paddssat 35100 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7257, 64, 66, 71syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7346, 21pclssN 35180 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
7457, 70, 72, 73syl3anc 1326 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
75 simprr 796 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
7646, 67, 23paddatclN 35235 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆𝑧𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7757, 62, 75, 76syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7847, 23psubclsubN 35226 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
7957, 77, 78syl2anc 693 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
8047, 21pclidN 35182 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8157, 79, 80syl2anc 693 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8274, 81sseqtrd 3641 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
83 hllat 34650 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
8457, 83syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ Lat)
85 simpllr 799 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ≠ ∅)
8646, 21pcl0bN 35209 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8786ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8887necon3bid 2838 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ≠ ∅ ↔ 𝑦 ≠ ∅))
8985, 88mpbird 247 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ≠ ∅)
90 eqid 2622 . . . . . . . . . . . . . . . . . 18 (le‘𝐾) = (le‘𝐾)
91 eqid 2622 . . . . . . . . . . . . . . . . . 18 (join‘𝐾) = (join‘𝐾)
9290, 91, 46, 67elpaddat 35090 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ (𝑈𝑦) ⊆ 𝐴𝑧𝐴) ∧ (𝑈𝑦) ≠ ∅) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
9384, 64, 75, 89, 92syl31anc 1329 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
94 simp1rl 1126 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ HL)
95943ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → 𝐾 ∈ HL)
9695adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝐾 ∈ HL)
97 simprl 794 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑤 ∈ (PSubSp‘𝐾))
98 simpl13 1138 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝐴)
99 unss 3787 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑤)
100 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑦𝑤)
10199, 100sylbir 225 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑦𝑤)
102101ad2antll 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑦𝑤)
103 simpl2 1065 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝 ∈ (𝑈𝑦))
10447, 21elpcliN 35179 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦𝑤𝑤 ∈ (PSubSp‘𝐾)) ∧ 𝑝 ∈ (𝑈𝑦)) → 𝑝𝑤)
10596, 102, 97, 103, 104syl31anc 1329 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝𝑤)
10628snss 4316 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑤 ↔ {𝑧} ⊆ 𝑤)
107106biimpri 218 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑧} ⊆ 𝑤𝑧𝑤)
108107adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑧𝑤)
10999, 108sylbir 225 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑧𝑤)
110109ad2antll 765 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑧𝑤)
111 simpl3 1066 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))
11290, 91, 46, 47psubspi2N 35034 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑤 ∈ (PSubSp‘𝐾) ∧ 𝑞𝐴) ∧ (𝑝𝑤𝑧𝑤𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))) → 𝑞𝑤)
11396, 97, 98, 105, 110, 111, 112syl33anc 1341 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝑤)
114113exp520 1288 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (𝑝 ∈ (𝑈𝑦) → (𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
115114rexlimdv 3030 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
1161153expia 1267 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞𝐴 → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
117116impd 447 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
11893, 117sylbid 230 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
119118ralrimdv 2968 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
120 simplrr 801 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦𝐴)
121120, 75jca 554 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦𝐴𝑧𝐴))
122121, 32sylib 208 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
123 vex 3203 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
12446, 47, 21, 123elpclN 35178 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
12557, 122, 124syl2anc 693 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
126119, 125sylibrd 249 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → 𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧}))))
127126ssrdv 3609 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ (𝑈‘(𝑦 ∪ {𝑧})))
12882, 127eqssd 3620 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
129128, 77eqeltrd 2701 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
130129exp43 640 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
13156, 130pm2.61dane 2881 . . . . . . . 8 (𝑦 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
132131a2d 29 . . . . . . 7 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
133132imp4b 613 . . . . . 6 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
13434, 133syl5bi 232 . . . . 5 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
135134ex 450 . . . 4 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
1365, 10, 15, 20, 26, 135findcard2 8200 . . 3 (𝑋 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆))
1371363impib 1262 . 2 ((𝑋 ∈ Fin ∧ 𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
1381373coml 1272 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cun 3572  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  lecple 15948  joincjn 16944  Latclat 17045  Atomscatm 34550  AtLatcal 34551  HLchlt 34637  PSubSpcpsubsp 34782  +𝑃cpadd 35081  PClcpclN 35173  PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-undef 7399  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-pclN 35174  df-polarityN 35189  df-psubclN 35221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator