Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsingles Structured version   Visualization version   GIF version

Theorem elsingles 32025
Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
elsingles (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elsingles
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐴 Singletons 𝐴 ∈ V)
2 snex 4908 . . . 4 {𝑥} ∈ V
3 eleq1 2689 . . . 4 (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V))
42, 3mpbiri 248 . . 3 (𝐴 = {𝑥} → 𝐴 ∈ V)
54exlimiv 1858 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V)
6 eleq1 2689 . . 3 (𝑦 = 𝐴 → (𝑦 Singletons 𝐴 Singletons ))
7 eqeq1 2626 . . . 4 (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥}))
87exbidv 1850 . . 3 (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥}))
9 df-singles 31970 . . . . 5 Singletons = ran Singleton
109eleq2i 2693 . . . 4 (𝑦 Singletons 𝑦 ∈ ran Singleton)
11 vex 3203 . . . . 5 𝑦 ∈ V
1211elrn 5366 . . . 4 (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦)
13 vex 3203 . . . . . 6 𝑥 ∈ V
1413, 11brsingle 32024 . . . . 5 (𝑥Singleton𝑦𝑦 = {𝑥})
1514exbii 1774 . . . 4 (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥})
1610, 12, 153bitri 286 . . 3 (𝑦 Singletons ↔ ∃𝑥 𝑦 = {𝑥})
176, 8, 16vtoclbg 3267 . 2 (𝐴 ∈ V → (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥}))
181, 5, 17pm5.21nii 368 1 (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  {csn 4177   class class class wbr 4653  ran crn 5115  Singletoncsingle 31945   Singletons csingles 31946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-singleton 31969  df-singles 31970
This theorem is referenced by:  dfsingles2  32028  snelsingles  32029  funpartlem  32049
  Copyright terms: Public domain W3C validator