Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunnel2 Structured version   Visualization version   GIF version

Theorem elunnel2 39198
Description: A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elunnel2 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐶) → 𝐴𝐵)

Proof of Theorem elunnel2
StepHypRef Expression
1 elun 3753 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21biimpi 206 . . 3 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐵𝐴𝐶))
32orcomd 403 . 2 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐶𝐴𝐵))
43orcanai 952 1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  wcel 1990  cun 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579
This theorem is referenced by:  limcresiooub  39874  limcresioolb  39875  fourierdlem48  40371  fourierdlem49  40372  fourierdlem101  40424  prsal  40538  isomenndlem  40744  hsphoidmvle2  40799  hsphoidmvle  40800
  Copyright terms: Public domain W3C validator