Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem101 Structured version   Visualization version   GIF version

Theorem fourierdlem101 40424
Description: Integral by substitution for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem101.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem101.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem101.g 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))))
fourierdlem101.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem101.6 (𝜑𝑀 ∈ ℕ)
fourierdlem101.n (𝜑𝑁 ∈ ℕ)
fourierdlem101.x (𝜑𝑋 ∈ ℝ)
fourierdlem101.f (𝜑𝐹:(-π[,]π)⟶ℂ)
fourierdlem101.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem101.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem101.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem101 (𝜑 → ∫(-π[,]π)((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘𝑠)) d𝑠)
Distinct variable groups:   𝐷,𝑠,𝑡   𝑡,𝐹   𝑖,𝐺,𝑠,𝑡   𝑡,𝐿   𝑖,𝑀,𝑠,𝑡   𝑚,𝑀,𝑝,𝑖   𝑛,𝑁,𝑠   𝑡,𝑁   𝑄,𝑖,𝑠,𝑡   𝑄,𝑝   𝑡,𝑅   𝑖,𝑋,𝑠,𝑡   𝜑,𝑖,𝑠,𝑡   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐷(𝑖,𝑚,𝑛,𝑝)   𝑃(𝑡,𝑖,𝑚,𝑛,𝑠,𝑝)   𝑄(𝑚,𝑛)   𝑅(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐺(𝑚,𝑛,𝑝)   𝐿(𝑖,𝑚,𝑛,𝑠,𝑝)   𝑀(𝑛)   𝑁(𝑖,𝑚,𝑝)   𝑋(𝑚,𝑛,𝑝)

Proof of Theorem fourierdlem101
Dummy variables 𝑟 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . 5 ((𝜑𝑡 ∈ (-π[,]π)) → 𝑡 ∈ (-π[,]π))
2 fourierdlem101.f . . . . . . 7 (𝜑𝐹:(-π[,]π)⟶ℂ)
32ffvelrnda 6359 . . . . . 6 ((𝜑𝑡 ∈ (-π[,]π)) → (𝐹𝑡) ∈ ℂ)
4 fourierdlem101.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
54adantr 481 . . . . . . . 8 ((𝜑𝑡 ∈ (-π[,]π)) → 𝑁 ∈ ℕ)
6 pire 24210 . . . . . . . . . . . 12 π ∈ ℝ
76renegcli 10342 . . . . . . . . . . 11 -π ∈ ℝ
8 eliccre 39728 . . . . . . . . . . 11 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈ ℝ)
97, 6, 8mp3an12 1414 . . . . . . . . . 10 (𝑡 ∈ (-π[,]π) → 𝑡 ∈ ℝ)
109adantl 482 . . . . . . . . 9 ((𝜑𝑡 ∈ (-π[,]π)) → 𝑡 ∈ ℝ)
11 fourierdlem101.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
1211adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1310, 12resubcld 10458 . . . . . . . 8 ((𝜑𝑡 ∈ (-π[,]π)) → (𝑡𝑋) ∈ ℝ)
14 fourierdlem101.d . . . . . . . . 9 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1514dirkerre 40312 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑡𝑋) ∈ ℝ) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℝ)
165, 13, 15syl2anc 693 . . . . . . 7 ((𝜑𝑡 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℝ)
1716recnd 10068 . . . . . 6 ((𝜑𝑡 ∈ (-π[,]π)) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℂ)
183, 17mulcld 10060 . . . . 5 ((𝜑𝑡 ∈ (-π[,]π)) → ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) ∈ ℂ)
19 fourierdlem101.g . . . . . 6 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))))
2019fvmpt2 6291 . . . . 5 ((𝑡 ∈ (-π[,]π) ∧ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) ∈ ℂ) → (𝐺𝑡) = ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))))
211, 18, 20syl2anc 693 . . . 4 ((𝜑𝑡 ∈ (-π[,]π)) → (𝐺𝑡) = ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))))
2221eqcomd 2628 . . 3 ((𝜑𝑡 ∈ (-π[,]π)) → ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) = (𝐺𝑡))
2322itgeq2dv 23548 . 2 (𝜑 → ∫(-π[,]π)((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) d𝑡 = ∫(-π[,]π)(𝐺𝑡) d𝑡)
24 fourierdlem101.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
25 fveq2 6191 . . . . 5 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
2625oveq1d 6665 . . . 4 (𝑗 = 𝑖 → ((𝑄𝑗) − 𝑋) = ((𝑄𝑖) − 𝑋))
2726cbvmptv 4750 . . 3 (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
28 fourierdlem101.6 . . 3 (𝜑𝑀 ∈ ℕ)
29 fourierdlem101.q . . 3 (𝜑𝑄 ∈ (𝑃𝑀))
3018, 19fmptd 6385 . . 3 (𝜑𝐺:(-π[,]π)⟶ℂ)
3119reseq1i 5392 . . . . 5 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑡 ∈ (-π[,]π) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
32 ioossicc 12259 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
337a1i 11 . . . . . . . . . 10 (𝜑 → -π ∈ ℝ)
3433rexrd 10089 . . . . . . . . 9 (𝜑 → -π ∈ ℝ*)
3534adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
366a1i 11 . . . . . . . . . 10 (𝜑 → π ∈ ℝ)
3736rexrd 10089 . . . . . . . . 9 (𝜑 → π ∈ ℝ*)
3837adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
3924, 28, 29fourierdlem15 40339 . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
4039adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
41 simpr 477 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
4235, 38, 40, 41fourierdlem8 40332 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
4332, 42syl5ss 3614 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
4443resmptd 5452 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (-π[,]π) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))))
4531, 44syl5eq 2668 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))))
462adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:(-π[,]π)⟶ℂ)
4746, 43feqresmpt 6250 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)))
48 fourierdlem101.fcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
4947, 48eqeltrrd 2702 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
50 eqidd 2623 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)))
51 simpr 477 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟)) → 𝑠 = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟))
52 eqidd 2623 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋)) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋)))
53 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑡 = 𝑟 → (𝑡𝑋) = (𝑟𝑋))
5453adantl 482 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑡 = 𝑟) → (𝑡𝑋) = (𝑟𝑋))
55 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
56 elioore 12205 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑟 ∈ ℝ)
5756adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
5811adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
5957, 58resubcld 10458 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟𝑋) ∈ ℝ)
6059adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟𝑋) ∈ ℝ)
6152, 54, 55, 60fvmptd 6288 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟) = (𝑟𝑋))
6261adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟)) → ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟) = (𝑟𝑋))
6351, 62eqtrd 2656 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟)) → 𝑠 = (𝑟𝑋))
6463fveq2d 6195 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟)) → ((𝐷𝑁)‘𝑠) = ((𝐷𝑁)‘(𝑟𝑋)))
65 elioore 12205 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑡 ∈ ℝ)
6665adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ℝ)
6711adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
6866, 67resubcld 10458 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡𝑋) ∈ ℝ)
6968adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡𝑋) ∈ ℝ)
70 eqid 2622 . . . . . . . . . . . 12 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋)) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))
7169, 70fmptd 6385 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋)):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
7271ffvelrnda 6359 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟) ∈ ℝ)
734ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑁 ∈ ℕ)
7414dirkerre 40312 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑟𝑋) ∈ ℝ) → ((𝐷𝑁)‘(𝑟𝑋)) ∈ ℝ)
7573, 60, 74syl2anc 693 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷𝑁)‘(𝑟𝑋)) ∈ ℝ)
7650, 64, 72, 75fvmptd 6288 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟)) = ((𝐷𝑁)‘(𝑟𝑋)))
7776eqcomd 2628 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷𝑁)‘(𝑟𝑋)) = ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟)))
7877mpteq2dva 4744 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑟𝑋))) = (𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟))))
7953fveq2d 6195 . . . . . . . . 9 (𝑡 = 𝑟 → ((𝐷𝑁)‘(𝑡𝑋)) = ((𝐷𝑁)‘(𝑟𝑋)))
8079cbvmptv 4750 . . . . . . . 8 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑡𝑋))) = (𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑟𝑋)))
8180a1i 11 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑡𝑋))) = (𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑟𝑋))))
8214dirkerre 40312 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑁)‘𝑠) ∈ ℝ)
834, 82sylan 488 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → ((𝐷𝑁)‘𝑠) ∈ ℝ)
84 eqid 2622 . . . . . . . . . 10 (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠))
8583, 84fmptd 6385 . . . . . . . . 9 (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)):ℝ⟶ℝ)
8685adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)):ℝ⟶ℝ)
87 fcompt 6400 . . . . . . . 8 (((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)):ℝ⟶ℝ ∧ (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋)):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) → ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))) = (𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟))))
8886, 71, 87syl2anc 693 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))) = (𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))‘𝑟))))
8978, 81, 883eqtr4d 2666 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑡𝑋))) = ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))))
90 eqid 2622 . . . . . . . 8 (𝑡 ∈ ℂ ↦ (𝑡𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡𝑋))
91 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
9211recnd 10068 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℂ)
9392adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℂ) → 𝑋 ∈ ℂ)
9491, 93negsubd 10398 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℂ) → (𝑡 + -𝑋) = (𝑡𝑋))
9594eqcomd 2628 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℂ) → (𝑡𝑋) = (𝑡 + -𝑋))
9695mpteq2dva 4744 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)))
9792negcld 10379 . . . . . . . . . . 11 (𝜑 → -𝑋 ∈ ℂ)
98 eqid 2622 . . . . . . . . . . . 12 (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋))
9998addccncf 22719 . . . . . . . . . . 11 (-𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) ∈ (ℂ–cn→ℂ))
10097, 99syl 17 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) ∈ (ℂ–cn→ℂ))
10196, 100eqeltrd 2701 . . . . . . . . 9 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
102101adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
103 ioossre 12235 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
104 ax-resscn 9993 . . . . . . . . . 10 ℝ ⊆ ℂ
105103, 104sstri 3612 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
106105a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
107104a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
10890, 102, 106, 107, 69cncfmptssg 40083 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ))
10983recnd 10068 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → ((𝐷𝑁)‘𝑠) ∈ ℂ)
110109, 84fmptd 6385 . . . . . . . . 9 (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)):ℝ⟶ℂ)
111 ssid 3624 . . . . . . . . . 10 ℂ ⊆ ℂ
11214dirkerf 40314 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
1134, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
114113feqmptd 6249 . . . . . . . . . . 11 (𝜑 → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)))
11514dirkercncf 40324 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
1164, 115syl 17 . . . . . . . . . . 11 (𝜑 → (𝐷𝑁) ∈ (ℝ–cn→ℝ))
117114, 116eqeltrrd 2702 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∈ (ℝ–cn→ℝ))
118 cncffvrn 22701 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∈ (ℝ–cn→ℝ)) → ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ) ↔ (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)):ℝ⟶ℂ))
119111, 117, 118sylancr 695 . . . . . . . . 9 (𝜑 → ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ) ↔ (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)):ℝ⟶ℂ))
120110, 119mpbird 247 . . . . . . . 8 (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ))
121120adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ))
122108, 121cncfco 22710 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ ((𝐷𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡𝑋))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
12389, 122eqeltrd 2701 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
12449, 123mulcncf 23215 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
12545, 124eqeltrd 2701 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
126 cncff 22696 . . . . . . . 8 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
12748, 126syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
128113adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑁):ℝ⟶ℝ)
129 elioore 12205 . . . . . . . . . . . . 13 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
130129adantl 482 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
13111adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
132130, 131resubcld 10458 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠𝑋) ∈ ℝ)
133128, 132ffvelrnd 6360 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷𝑁)‘(𝑠𝑋)) ∈ ℝ)
134133recnd 10068 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷𝑁)‘(𝑠𝑋)) ∈ ℂ)
135 eqid 2622 . . . . . . . . 9 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))
136134, 135fmptd 6385 . . . . . . . 8 (𝜑 → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
137136adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
138 eqid 2622 . . . . . . 7 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)))
139 fourierdlem101.r . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
140 oveq1 6657 . . . . . . . . . . . . . 14 (𝑡 = (𝑄𝑖) → (𝑡𝑋) = ((𝑄𝑖) − 𝑋))
141140fveq2d 6195 . . . . . . . . . . . . 13 (𝑡 = (𝑄𝑖) → ((𝐷𝑁)‘(𝑡𝑋)) = ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)))
142141eqcomd 2628 . . . . . . . . . . . 12 (𝑡 = (𝑄𝑖) → ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)) = ((𝐷𝑁)‘(𝑡𝑋)))
143142adantl 482 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ 𝑡 = (𝑄𝑖)) → ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)) = ((𝐷𝑁)‘(𝑡𝑋)))
144 eqidd 2623 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ ¬ 𝑡 = (𝑄𝑖)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))))
145 oveq1 6657 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (𝑠𝑋) = (𝑡𝑋))
146145fveq2d 6195 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((𝐷𝑁)‘(𝑠𝑋)) = ((𝐷𝑁)‘(𝑡𝑋)))
147146adantl 482 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ ¬ 𝑡 = (𝑄𝑖)) ∧ 𝑠 = 𝑡) → ((𝐷𝑁)‘(𝑠𝑋)) = ((𝐷𝑁)‘(𝑡𝑋)))
148 velsn 4193 . . . . . . . . . . . . . . 15 (𝑡 ∈ {(𝑄𝑖)} ↔ 𝑡 = (𝑄𝑖))
149148notbii 310 . . . . . . . . . . . . . 14 𝑡 ∈ {(𝑄𝑖)} ↔ ¬ 𝑡 = (𝑄𝑖))
150 elunnel2 39198 . . . . . . . . . . . . . 14 ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ∧ ¬ 𝑡 ∈ {(𝑄𝑖)}) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
151149, 150sylan2br 493 . . . . . . . . . . . . 13 ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ∧ ¬ 𝑡 = (𝑄𝑖)) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
152151adantll 750 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ ¬ 𝑡 = (𝑄𝑖)) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
153113ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → (𝐷𝑁):ℝ⟶ℝ)
154 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄𝑖)) → 𝑡 = (𝑄𝑖))
1559ssriv 3607 . . . . . . . . . . . . . . . . . . . 20 (-π[,]π) ⊆ ℝ
156 fzossfz 12488 . . . . . . . . . . . . . . . . . . . . . 22 (0..^𝑀) ⊆ (0...𝑀)
157156, 41sseldi 3601 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
15840, 157ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
159155, 158sseldi 3601 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
160159adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄𝑖)) → (𝑄𝑖) ∈ ℝ)
161154, 160eqeltrd 2701 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄𝑖)) → 𝑡 ∈ ℝ)
162161adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ 𝑡 = (𝑄𝑖)) → 𝑡 ∈ ℝ)
163152, 65syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ ¬ 𝑡 = (𝑄𝑖)) → 𝑡 ∈ ℝ)
164162, 163pm2.61dan 832 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → 𝑡 ∈ ℝ)
16511ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → 𝑋 ∈ ℝ)
166164, 165resubcld 10458 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → (𝑡𝑋) ∈ ℝ)
167153, 166ffvelrnd 6360 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℝ)
168167adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ ¬ 𝑡 = (𝑄𝑖)) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℝ)
169144, 147, 152, 168fvmptd 6288 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ ¬ 𝑡 = (𝑄𝑖)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡) = ((𝐷𝑁)‘(𝑡𝑋)))
170143, 169ifeqda 4121 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → if(𝑡 = (𝑄𝑖), ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝐷𝑁)‘(𝑡𝑋)))
171170mpteq2dva 4744 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ if(𝑡 = (𝑄𝑖), ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))))
172113adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷𝑁):ℝ⟶ℝ)
173 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → 𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}))
174 elun 3753 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↔ (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄𝑖)}))
175173, 174sylib 208 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄𝑖)}))
176175adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄𝑖)}))
177 elsni 4194 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ {(𝑄𝑖)} → 𝑠 = (𝑄𝑖))
178177adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄𝑖)}) → 𝑠 = (𝑄𝑖))
179159adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄𝑖)}) → (𝑄𝑖) ∈ ℝ)
180178, 179eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄𝑖)}) → 𝑠 ∈ ℝ)
181180ex 450 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ {(𝑄𝑖)} → 𝑠 ∈ ℝ))
182181adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → (𝑠 ∈ {(𝑄𝑖)} → 𝑠 ∈ ℝ))
183 pm3.44 533 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ) ∧ (𝑠 ∈ {(𝑄𝑖)} → 𝑠 ∈ ℝ)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄𝑖)}) → 𝑠 ∈ ℝ))
184129, 182, 183sylancr 695 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄𝑖)}) → 𝑠 ∈ ℝ))
185176, 184mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → 𝑠 ∈ ℝ)
18611ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → 𝑋 ∈ ℝ)
187185, 186resubcld 10458 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → (𝑠𝑋) ∈ ℝ)
188 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋)) = (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))
189187, 188fmptd 6385 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋)):(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})⟶ℝ)
190 fcompt 6400 . . . . . . . . . . . . . . 15 (((𝐷𝑁):ℝ⟶ℝ ∧ (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋)):(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})⟶ℝ) → ((𝐷𝑁) ∘ (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))) = (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘((𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))‘𝑡))))
191172, 189, 190syl2anc 693 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐷𝑁) ∘ (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))) = (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘((𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))‘𝑡))))
192 eqidd 2623 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋)) = (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋)))
193145adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ 𝑠 = 𝑡) → (𝑠𝑋) = (𝑡𝑋))
194 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}))
195192, 193, 194, 166fvmptd 6288 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → ((𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))‘𝑡) = (𝑡𝑋))
196195fveq2d 6195 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → ((𝐷𝑁)‘((𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))‘𝑡)) = ((𝐷𝑁)‘(𝑡𝑋)))
197196mpteq2dva 4744 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘((𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))‘𝑡))) = (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))))
198191, 197eqtr2d 2657 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) = ((𝐷𝑁) ∘ (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))))
199 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ ↦ (𝑠𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠𝑋))
200 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
20192adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ ℂ) → 𝑋 ∈ ℂ)
202200, 201negsubd 10398 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ ℂ) → (𝑠 + -𝑋) = (𝑠𝑋))
203202eqcomd 2628 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑠 ∈ ℂ) → (𝑠𝑋) = (𝑠 + -𝑋))
204203mpteq2dva 4744 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)))
205 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋))
206205addccncf 22719 . . . . . . . . . . . . . . . . . . 19 (-𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) ∈ (ℂ–cn→ℂ))
20797, 206syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) ∈ (ℂ–cn→ℂ))
208204, 207eqeltrd 2701 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠𝑋)) ∈ (ℂ–cn→ℂ))
209208adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℂ ↦ (𝑠𝑋)) ∈ (ℂ–cn→ℂ))
210159recnd 10068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
211210snssd 4340 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → {(𝑄𝑖)} ⊆ ℂ)
212106, 211unssd 3789 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ⊆ ℂ)
213199, 209, 212, 107, 187cncfmptssg 40083 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋)) ∈ ((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})–cn→ℝ))
214114, 120eqeltrd 2701 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷𝑁) ∈ (ℝ–cn→ℂ))
215214adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷𝑁) ∈ (ℝ–cn→ℂ))
216213, 215cncfco 22710 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐷𝑁) ∘ (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))) ∈ ((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})–cn→ℂ))
217 eqid 2622 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
218 eqid 2622 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) = ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}))
219217cnfldtop 22587 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
220 unicntop 22589 . . . . . . . . . . . . . . . . . . 19 ℂ = (TopOpen‘ℂfld)
221220restid 16094 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
222219, 221ax-mp 5 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
223222eqcomi 2631 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
224217, 218, 223cncfcn 22712 . . . . . . . . . . . . . . 15 (((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) Cn (TopOpen‘ℂfld)))
225212, 111, 224sylancl 694 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) Cn (TopOpen‘ℂfld)))
226216, 225eleqtrd 2703 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐷𝑁) ∘ (𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ (𝑠𝑋))) ∈ (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) Cn (TopOpen‘ℂfld)))
227198, 226eqeltrd 2701 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) Cn (TopOpen‘ℂfld)))
228217cnfldtopon 22586 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
229 resttopon 20965 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∈ (TopOn‘(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})))
230228, 212, 229sylancr 695 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∈ (TopOn‘(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})))
231 cncnp 21084 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∈ (TopOn‘(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) Cn (TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))):(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘𝑠))))
232230, 228, 231sylancl 694 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) Cn (TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))):(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘𝑠))))
233227, 232mpbid 222 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))):(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘𝑠)))
234233simprd 479 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘𝑠))
235 eqidd 2623 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (𝑄𝑖))
236 elsng 4191 . . . . . . . . . . . . . 14 ((𝑄𝑖) ∈ ℝ → ((𝑄𝑖) ∈ {(𝑄𝑖)} ↔ (𝑄𝑖) = (𝑄𝑖)))
237159, 236syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) ∈ {(𝑄𝑖)} ↔ (𝑄𝑖) = (𝑄𝑖)))
238235, 237mpbird 247 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ {(𝑄𝑖)})
239238olcd 408 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄𝑖) ∈ {(𝑄𝑖)}))
240 elun 3753 . . . . . . . . . . 11 ((𝑄𝑖) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↔ ((𝑄𝑖) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄𝑖) ∈ {(𝑄𝑖)}))
241239, 240sylibr 224 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}))
242 fveq2 6191 . . . . . . . . . . . 12 (𝑠 = (𝑄𝑖) → ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘𝑠) = ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘(𝑄𝑖)))
243242eleq2d 2687 . . . . . . . . . . 11 (𝑠 = (𝑄𝑖) → ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘(𝑄𝑖))))
244243rspccva 3308 . . . . . . . . . 10 ((∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘𝑠) ∧ (𝑄𝑖) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘(𝑄𝑖)))
245234, 241, 244syl2anc 693 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘(𝑄𝑖)))
246171, 245eqeltrd 2701 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ if(𝑡 = (𝑄𝑖), ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘(𝑄𝑖)))
247 eqid 2622 . . . . . . . . 9 (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ if(𝑡 = (𝑄𝑖), ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ if(𝑡 = (𝑄𝑖), ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)))
248218, 217, 247, 137, 106, 210ellimc 23637 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐷𝑁)‘((𝑄𝑖) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))) lim (𝑄𝑖)) ↔ (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)}) ↦ if(𝑡 = (𝑄𝑖), ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄𝑖)})) CnP (TopOpen‘ℂfld))‘(𝑄𝑖))))
249246, 248mpbird 247 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐷𝑁)‘((𝑄𝑖) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))) lim (𝑄𝑖)))
250127, 137, 138, 139, 249mullimcf 39855 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷𝑁)‘((𝑄𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) lim (𝑄𝑖)))
251 fvres 6207 . . . . . . . . . 10 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹𝑡))
252251adantl 482 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹𝑡))
253252oveq1d 6665 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝐹𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)))
254253mpteq2dva 4744 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))))
255254oveq1d 6665 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) lim (𝑄𝑖)) = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) lim (𝑄𝑖)))
256250, 255eleqtrd 2703 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷𝑁)‘((𝑄𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) lim (𝑄𝑖)))
257 eqidd 2623 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))))
258 simpr 477 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → 𝑠 = 𝑡)
259258oveq1d 6665 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → (𝑠𝑋) = (𝑡𝑋))
260259fveq2d 6195 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → ((𝐷𝑁)‘(𝑠𝑋)) = ((𝐷𝑁)‘(𝑡𝑋)))
261 simpr 477 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
262113ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑁):ℝ⟶ℝ)
263262, 69ffvelrnd 6360 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℝ)
264257, 260, 261, 263fvmptd 6288 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡) = ((𝐷𝑁)‘(𝑡𝑋)))
265264oveq2d 6666 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))))
266265mpteq2dva 4744 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))))
267266oveq1d 6665 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) lim (𝑄𝑖)) = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))) lim (𝑄𝑖)))
268256, 267eleqtrd 2703 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷𝑁)‘((𝑄𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))) lim (𝑄𝑖)))
26945eqcomd 2628 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
270269oveq1d 6665 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
271268, 270eleqtrd 2703 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷𝑁)‘((𝑄𝑖) − 𝑋))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
272 fourierdlem101.l . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
273 iftrue 4092 . . . . . . . . . . 11 (𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)))
274 oveq1 6657 . . . . . . . . . . . . 13 (𝑡 = (𝑄‘(𝑖 + 1)) → (𝑡𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋))
275274eqcomd 2628 . . . . . . . . . . . 12 (𝑡 = (𝑄‘(𝑖 + 1)) → ((𝑄‘(𝑖 + 1)) − 𝑋) = (𝑡𝑋))
276275fveq2d 6195 . . . . . . . . . . 11 (𝑡 = (𝑄‘(𝑖 + 1)) → ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) = ((𝐷𝑁)‘(𝑡𝑋)))
277273, 276eqtrd 2656 . . . . . . . . . 10 (𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝐷𝑁)‘(𝑡𝑋)))
278277adantl 482 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝐷𝑁)‘(𝑡𝑋)))
279 iffalse 4095 . . . . . . . . . . 11 𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))
280279adantl 482 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))
281 eqidd 2623 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))))
282146adantl 482 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = 𝑡) → ((𝐷𝑁)‘(𝑠𝑋)) = ((𝐷𝑁)‘(𝑡𝑋)))
283 elun 3753 . . . . . . . . . . . . . . 15 (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↔ (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑡 ∈ {(𝑄‘(𝑖 + 1))}))
284283biimpi 206 . . . . . . . . . . . . . 14 (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑡 ∈ {(𝑄‘(𝑖 + 1))}))
285284orcomd 403 . . . . . . . . . . . . 13 (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) → (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
286285ad2antlr 763 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
287 velsn 4193 . . . . . . . . . . . . . . 15 (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ↔ 𝑡 = (𝑄‘(𝑖 + 1)))
288287notbii 310 . . . . . . . . . . . . . 14 𝑡 ∈ {(𝑄‘(𝑖 + 1))} ↔ ¬ 𝑡 = (𝑄‘(𝑖 + 1)))
289288biimpri 218 . . . . . . . . . . . . 13 𝑡 = (𝑄‘(𝑖 + 1)) → ¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))})
290289adantl 482 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))})
291 pm2.53 388 . . . . . . . . . . . 12 ((𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))} → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
292286, 290, 291sylc 65 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
293172ad2antrr 762 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝐷𝑁):ℝ⟶ℝ)
294292, 65syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑡 ∈ ℝ)
29511ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑋 ∈ ℝ)
296294, 295resubcld 10458 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑡𝑋) ∈ ℝ)
297293, 296ffvelrnd 6360 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℝ)
298281, 282, 292, 297fvmptd 6288 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡) = ((𝐷𝑁)‘(𝑡𝑋)))
299280, 298eqtrd 2656 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝐷𝑁)‘(𝑡𝑋)))
300278, 299pm2.61dan 832 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)) = ((𝐷𝑁)‘(𝑡𝑋)))
301300mpteq2dva 4744 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))))
302 eqid 2622 . . . . . . . . . . . 12 (𝑡 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑡𝑋))) = (𝑡 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑡𝑋)))
303104a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ ℂ)
304 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
30511adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ) → 𝑋 ∈ ℝ)
306304, 305resubcld 10458 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ) → (𝑡𝑋) ∈ ℝ)
30790, 101, 303, 303, 306cncfmptssg 40083 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ ℝ ↦ (𝑡𝑋)) ∈ (ℝ–cn→ℝ))
308307, 214cncfcompt 40096 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (ℝ–cn→ℂ))
309308adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℝ ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (ℝ–cn→ℂ))
310103a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
311 fzofzp1 12565 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
312311adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
31340, 312ffvelrnd 6360 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
314155, 313sseldi 3601 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
315314snssd 4340 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → {(𝑄‘(𝑖 + 1))} ⊆ ℝ)
316310, 315unssd 3789 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℝ)
317111a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
318172adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝐷𝑁):ℝ⟶ℝ)
319316sselda 3603 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → 𝑡 ∈ ℝ)
32011ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → 𝑋 ∈ ℝ)
321319, 320resubcld 10458 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝑡𝑋) ∈ ℝ)
322318, 321ffvelrnd 6360 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℝ)
323322recnd 10068 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → ((𝐷𝑁)‘(𝑡𝑋)) ∈ ℂ)
324302, 309, 316, 317, 323cncfmptssg 40083 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ))
325155, 104sstri 3612 . . . . . . . . . . . . . . 15 (-π[,]π) ⊆ ℂ
326325, 313sseldi 3601 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
327326snssd 4340 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → {(𝑄‘(𝑖 + 1))} ⊆ ℂ)
328106, 327unssd 3789 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ)
329 eqid 2622 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))
330217, 329, 223cncfcn 22712 . . . . . . . . . . . 12 (((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn (TopOpen‘ℂfld)))
331328, 111, 330sylancl 694 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn (TopOpen‘ℂfld)))
332324, 331eleqtrd 2703 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn (TopOpen‘ℂfld)))
333 resttopon 20965 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})))
334228, 328, 333sylancr 695 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})))
335 cncnp 21084 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn (TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))):(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘𝑠))))
336334, 228, 335sylancl 694 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ (((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn (TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))):(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘𝑠))))
337332, 336mpbid 222 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))):(((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘𝑠)))
338337simprd 479 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘𝑠))
339 eqidd 2623 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
340 elsng 4191 . . . . . . . . . . . 12 ((𝑄‘(𝑖 + 1)) ∈ ℝ → ((𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))} ↔ (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1))))
341314, 340syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))} ↔ (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1))))
342339, 341mpbird 247 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))})
343342olcd 408 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))}))
344 elun 3753 . . . . . . . . 9 ((𝑄‘(𝑖 + 1)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↔ ((𝑄‘(𝑖 + 1)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))}))
345343, 344sylibr 224 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))
346 fveq2 6191 . . . . . . . . . 10 (𝑠 = (𝑄‘(𝑖 + 1)) → ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘𝑠) = ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1))))
347346eleq2d 2687 . . . . . . . . 9 (𝑠 = (𝑄‘(𝑖 + 1)) → ((𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))))
348347rspccva 3308 . . . . . . . 8 ((∀𝑠 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘𝑠) ∧ (𝑄‘(𝑖 + 1)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1))))
349338, 345, 348syl2anc 693 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷𝑁)‘(𝑡𝑋))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1))))
350301, 349eqeltrd 2701 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1))))
351 eqid 2622 . . . . . . 7 (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡)))
352329, 217, 351, 137, 106, 326ellimc 23637 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))) lim (𝑄‘(𝑖 + 1))) ↔ (𝑡 ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))))
353350, 352mpbird 247 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋))) lim (𝑄‘(𝑖 + 1))))
354127, 137, 138, 272, 353mullimcf 39855 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) lim (𝑄‘(𝑖 + 1))))
355266, 254, 453eqtr4d 2666 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
356355oveq1d 6665 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷𝑁)‘(𝑠𝑋)))‘𝑡))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
357354, 356eleqtrd 2703 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
35824, 27, 28, 29, 11, 30, 125, 271, 357fourierdlem93 40416 . 2 (𝜑 → ∫(-π[,]π)(𝐺𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘(𝑋 + 𝑠)) d𝑠)
35919a1i 11 . . . 4 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋)))))
360 fveq2 6191 . . . . . . 7 (𝑡 = (𝑋 + 𝑠) → (𝐹𝑡) = (𝐹‘(𝑋 + 𝑠)))
361360oveq1d 6665 . . . . . 6 (𝑡 = (𝑋 + 𝑠) → ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘(𝑡𝑋))))
362361adantl 482 . . . . 5 (((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘(𝑡𝑋))))
363 oveq1 6657 . . . . . . . 8 (𝑡 = (𝑋 + 𝑠) → (𝑡𝑋) = ((𝑋 + 𝑠) − 𝑋))
36492adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℂ)
36533, 11resubcld 10458 . . . . . . . . . . . 12 (𝜑 → (-π − 𝑋) ∈ ℝ)
366365adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ∈ ℝ)
36736, 11resubcld 10458 . . . . . . . . . . . 12 (𝜑 → (π − 𝑋) ∈ ℝ)
368367adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (π − 𝑋) ∈ ℝ)
369 simpr 477 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋)))
370 eliccre 39728 . . . . . . . . . . 11 (((-π − 𝑋) ∈ ℝ ∧ (π − 𝑋) ∈ ℝ ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ)
371366, 368, 369, 370syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ)
372371recnd 10068 . . . . . . . . 9 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℂ)
373364, 372pncan2d 10394 . . . . . . . 8 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝑋 + 𝑠) − 𝑋) = 𝑠)
374363, 373sylan9eqr 2678 . . . . . . 7 (((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → (𝑡𝑋) = 𝑠)
375374fveq2d 6195 . . . . . 6 (((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐷𝑁)‘(𝑡𝑋)) = ((𝐷𝑁)‘𝑠))
376375oveq2d 6666 . . . . 5 (((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘(𝑡𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘𝑠)))
377362, 376eqtrd 2656 . . . 4 (((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘𝑠)))
3787a1i 11 . . . . 5 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ∈ ℝ)
3796a1i 11 . . . . 5 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈ ℝ)
38011adantr 481 . . . . . 6 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℝ)
381380, 371readdcld 10069 . . . . 5 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ∈ ℝ)
38233recnd 10068 . . . . . . . . 9 (𝜑 → -π ∈ ℂ)
38392, 382pncan3d 10395 . . . . . . . 8 (𝜑 → (𝑋 + (-π − 𝑋)) = -π)
384383eqcomd 2628 . . . . . . 7 (𝜑 → -π = (𝑋 + (-π − 𝑋)))
385384adantr 481 . . . . . 6 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π = (𝑋 + (-π − 𝑋)))
386 elicc2 12238 . . . . . . . . . 10 (((-π − 𝑋) ∈ ℝ ∧ (π − 𝑋) ∈ ℝ) → (𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠𝑠 ≤ (π − 𝑋))))
387366, 368, 386syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠𝑠 ≤ (π − 𝑋))))
388369, 387mpbid 222 . . . . . . . 8 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠𝑠 ≤ (π − 𝑋)))
389388simp2d 1074 . . . . . . 7 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ≤ 𝑠)
390366, 371, 380, 389leadd2dd 10642 . . . . . 6 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (-π − 𝑋)) ≤ (𝑋 + 𝑠))
391385, 390eqbrtrd 4675 . . . . 5 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ≤ (𝑋 + 𝑠))
392388simp3d 1075 . . . . . . 7 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ≤ (π − 𝑋))
393371, 368, 380, 392leadd2dd 10642 . . . . . 6 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ≤ (𝑋 + (π − 𝑋)))
394 picn 24211 . . . . . . . 8 π ∈ ℂ
395394a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈ ℂ)
396364, 395pncan3d 10395 . . . . . 6 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (π − 𝑋)) = π)
397393, 396breqtrd 4679 . . . . 5 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ≤ π)
398378, 379, 381, 391, 397eliccd 39726 . . . 4 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ∈ (-π[,]π))
3992adantr 481 . . . . . 6 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐹:(-π[,]π)⟶ℂ)
400399, 398ffvelrnd 6360 . . . . 5 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
401371, 109syldan 487 . . . . 5 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐷𝑁)‘𝑠) ∈ ℂ)
402400, 401mulcld 10060 . . . 4 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘𝑠)) ∈ ℂ)
403359, 377, 398, 402fvmptd 6288 . . 3 ((𝜑𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐺‘(𝑋 + 𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘𝑠)))
404403itgeq2dv 23548 . 2 (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘𝑠)) d𝑠)
40523, 358, 4043eqtrd 2660 1 (𝜑 → ∫(-π[,]π)((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘𝑠)) d𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cun 3572  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  cres 5116  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  (,)cioo 12175  [,]cicc 12178  ...cfz 12326  ..^cfzo 12465   mod cmo 12668  sincsin 14794  πcpi 14797  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   CnP ccnp 21029  cnccncf 22679  citg 23387   lim climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem111  40434
  Copyright terms: Public domain W3C validator