Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomenndlem Structured version   Visualization version   GIF version

Theorem isomenndlem 40744
Description: 𝑂 is sub-additive w.r.t. countable indexed union, implies that 𝑂 is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
isomenndlem.o (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
isomenndlem.o0 (𝜑 → (𝑂‘∅) = 0)
isomenndlem.y (𝜑𝑌 ⊆ 𝒫 𝑋)
isomenndlem.subadd ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
isomenndlem.b (𝜑𝐵 ⊆ ℕ)
isomenndlem.f (𝜑𝐹:𝐵1-1-onto𝑌)
isomenndlem.a 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))
Assertion
Ref Expression
isomenndlem (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))
Distinct variable groups:   𝐴,𝑎,𝑛   𝐵,𝑛   𝑛,𝐹   𝑂,𝑎,𝑛   𝑋,𝑎   𝑛,𝑌   𝜑,𝑎,𝑛
Allowed substitution hints:   𝐵(𝑎)   𝐹(𝑎)   𝑋(𝑛)   𝑌(𝑎)

Proof of Theorem isomenndlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝜑𝜑)
2 iftrue 4092 . . . . . . . . 9 (𝑛𝐵 → if(𝑛𝐵, (𝐹𝑛), ∅) = (𝐹𝑛))
32adantl 482 . . . . . . . 8 ((𝜑𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) = (𝐹𝑛))
4 isomenndlem.f . . . . . . . . . . 11 (𝜑𝐹:𝐵1-1-onto𝑌)
5 f1of 6137 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑌𝐹:𝐵𝑌)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵𝑌)
7 ssun1 3776 . . . . . . . . . . 11 𝑌 ⊆ (𝑌 ∪ {∅})
87a1i 11 . . . . . . . . . 10 (𝜑𝑌 ⊆ (𝑌 ∪ {∅}))
96, 8fssd 6057 . . . . . . . . 9 (𝜑𝐹:𝐵⟶(𝑌 ∪ {∅}))
109ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑛𝐵) → (𝐹𝑛) ∈ (𝑌 ∪ {∅}))
113, 10eqeltrd 2701 . . . . . . 7 ((𝜑𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
1211adantlr 751 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
13 iffalse 4095 . . . . . . . . 9 𝑛𝐵 → if(𝑛𝐵, (𝐹𝑛), ∅) = ∅)
1413adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) = ∅)
15 0ex 4790 . . . . . . . . . . 11 ∅ ∈ V
1615snid 4208 . . . . . . . . . 10 ∅ ∈ {∅}
17 elun2 3781 . . . . . . . . . 10 (∅ ∈ {∅} → ∅ ∈ (𝑌 ∪ {∅}))
1816, 17ax-mp 5 . . . . . . . . 9 ∅ ∈ (𝑌 ∪ {∅})
1918a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑛𝐵) → ∅ ∈ (𝑌 ∪ {∅}))
2014, 19eqeltrd 2701 . . . . . . 7 ((𝜑 ∧ ¬ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
2120adantlr 751 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
2212, 21pm2.61dan 832 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
23 isomenndlem.a . . . . 5 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))
2422, 23fmptd 6385 . . . 4 (𝜑𝐴:ℕ⟶(𝑌 ∪ {∅}))
25 isomenndlem.y . . . . 5 (𝜑𝑌 ⊆ 𝒫 𝑋)
26 0elpw 4834 . . . . . . 7 ∅ ∈ 𝒫 𝑋
27 snssi 4339 . . . . . . 7 (∅ ∈ 𝒫 𝑋 → {∅} ⊆ 𝒫 𝑋)
2826, 27ax-mp 5 . . . . . 6 {∅} ⊆ 𝒫 𝑋
2928a1i 11 . . . . 5 (𝜑 → {∅} ⊆ 𝒫 𝑋)
3025, 29unssd 3789 . . . 4 (𝜑 → (𝑌 ∪ {∅}) ⊆ 𝒫 𝑋)
3124, 30fssd 6057 . . 3 (𝜑𝐴:ℕ⟶𝒫 𝑋)
32 nnex 11026 . . . . . 6 ℕ ∈ V
3332mptex 6486 . . . . 5 (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅)) ∈ V
3423, 33eqeltri 2697 . . . 4 𝐴 ∈ V
35 feq1 6026 . . . . . 6 (𝑎 = 𝐴 → (𝑎:ℕ⟶𝒫 𝑋𝐴:ℕ⟶𝒫 𝑋))
3635anbi2d 740 . . . . 5 (𝑎 = 𝐴 → ((𝜑𝑎:ℕ⟶𝒫 𝑋) ↔ (𝜑𝐴:ℕ⟶𝒫 𝑋)))
37 fveq1 6190 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑛) = (𝐴𝑛))
3837iuneq2d 4547 . . . . . . 7 (𝑎 = 𝐴 𝑛 ∈ ℕ (𝑎𝑛) = 𝑛 ∈ ℕ (𝐴𝑛))
3938fveq2d 6195 . . . . . 6 (𝑎 = 𝐴 → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) = (𝑂 𝑛 ∈ ℕ (𝐴𝑛)))
40 simpl 473 . . . . . . . . . 10 ((𝑎 = 𝐴𝑛 ∈ ℕ) → 𝑎 = 𝐴)
4140fveq1d 6193 . . . . . . . . 9 ((𝑎 = 𝐴𝑛 ∈ ℕ) → (𝑎𝑛) = (𝐴𝑛))
4241fveq2d 6195 . . . . . . . 8 ((𝑎 = 𝐴𝑛 ∈ ℕ) → (𝑂‘(𝑎𝑛)) = (𝑂‘(𝐴𝑛)))
4342mpteq2dva 4744 . . . . . . 7 (𝑎 = 𝐴 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛))))
4443fveq2d 6195 . . . . . 6 (𝑎 = 𝐴 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))
4539, 44breq12d 4666 . . . . 5 (𝑎 = 𝐴 → ((𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))) ↔ (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛))))))
4636, 45imbi12d 334 . . . 4 (𝑎 = 𝐴 → (((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛))))) ↔ ((𝜑𝐴:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))))
47 isomenndlem.subadd . . . 4 ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
4834, 46, 47vtocl 3259 . . 3 ((𝜑𝐴:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))
491, 31, 48syl2anc 693 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))
506ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → 𝐹:𝐵𝑌)
51 simpr 477 . . . . . . . . . . . . 13 ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
52 id 22 . . . . . . . . . . . . . . 15 (𝐵 = ℕ → 𝐵 = ℕ)
5352eqcomd 2628 . . . . . . . . . . . . . 14 (𝐵 = ℕ → ℕ = 𝐵)
5453adantr 481 . . . . . . . . . . . . 13 ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → ℕ = 𝐵)
5551, 54eleqtrd 2703 . . . . . . . . . . . 12 ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → 𝑛𝐵)
5655adantll 750 . . . . . . . . . . 11 (((𝜑𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛𝐵)
5750, 56ffvelrnd 6360 . . . . . . . . . 10 (((𝜑𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑌)
58 eqid 2622 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (𝐹𝑛)) = (𝑛 ∈ ℕ ↦ (𝐹𝑛))
5957, 58fmptd 6385 . . . . . . . . 9 ((𝜑𝐵 = ℕ) → (𝑛 ∈ ℕ ↦ (𝐹𝑛)):ℕ⟶𝑌)
6023a1i 11 . . . . . . . . . . . 12 (𝐵 = ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅)))
6155iftrued 4094 . . . . . . . . . . . . 13 ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛𝐵, (𝐹𝑛), ∅) = (𝐹𝑛))
6261mpteq2dva 4744 . . . . . . . . . . . 12 (𝐵 = ℕ → (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅)) = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
6360, 62eqtrd 2656 . . . . . . . . . . 11 (𝐵 = ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
6463feq1d 6030 . . . . . . . . . 10 (𝐵 = ℕ → (𝐴:ℕ⟶𝑌 ↔ (𝑛 ∈ ℕ ↦ (𝐹𝑛)):ℕ⟶𝑌))
6564adantl 482 . . . . . . . . 9 ((𝜑𝐵 = ℕ) → (𝐴:ℕ⟶𝑌 ↔ (𝑛 ∈ ℕ ↦ (𝐹𝑛)):ℕ⟶𝑌))
6659, 65mpbird 247 . . . . . . . 8 ((𝜑𝐵 = ℕ) → 𝐴:ℕ⟶𝑌)
67 f1ofo 6144 . . . . . . . . . . . . . . . 16 (𝐹:𝐵1-1-onto𝑌𝐹:𝐵onto𝑌)
684, 67syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐵onto𝑌)
69 dffo3 6374 . . . . . . . . . . . . . . 15 (𝐹:𝐵onto𝑌 ↔ (𝐹:𝐵𝑌 ∧ ∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛)))
7068, 69sylib 208 . . . . . . . . . . . . . 14 (𝜑 → (𝐹:𝐵𝑌 ∧ ∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛)))
7170simprd 479 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛))
7271adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦𝑌) → ∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛))
73 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑦𝑌) → 𝑦𝑌)
74 rspa 2930 . . . . . . . . . . . 12 ((∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛) ∧ 𝑦𝑌) → ∃𝑛𝐵 𝑦 = (𝐹𝑛))
7572, 73, 74syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑦𝑌) → ∃𝑛𝐵 𝑦 = (𝐹𝑛))
7675adantlr 751 . . . . . . . . . 10 (((𝜑𝐵 = ℕ) ∧ 𝑦𝑌) → ∃𝑛𝐵 𝑦 = (𝐹𝑛))
77 nfv 1843 . . . . . . . . . . . 12 𝑛(𝜑𝐵 = ℕ)
78 nfre1 3005 . . . . . . . . . . . 12 𝑛𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)
79 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝐵 = ℕ ∧ 𝑛𝐵) → 𝑛𝐵)
80 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝐵 = ℕ ∧ 𝑛𝐵) → 𝐵 = ℕ)
8179, 80eleqtrd 2703 . . . . . . . . . . . . . . . 16 ((𝐵 = ℕ ∧ 𝑛𝐵) → 𝑛 ∈ ℕ)
8281adantll 750 . . . . . . . . . . . . . . 15 (((𝜑𝐵 = ℕ) ∧ 𝑛𝐵) → 𝑛 ∈ ℕ)
83823adant3 1081 . . . . . . . . . . . . . 14 (((𝜑𝐵 = ℕ) ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → 𝑛 ∈ ℕ)
8460fveq1d 6193 . . . . . . . . . . . . . . . . 17 (𝐵 = ℕ → (𝐴𝑛) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛))
85843ad2ant1 1082 . . . . . . . . . . . . . . . 16 ((𝐵 = ℕ ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → (𝐴𝑛) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛))
86 fvex 6201 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑛) ∈ V
8786, 15ifex 4156 . . . . . . . . . . . . . . . . . . . 20 if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐵 = ℕ ∧ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V)
89 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))
9089fvmpt2 6291 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V) → ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
9181, 88, 90syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝐵 = ℕ ∧ 𝑛𝐵) → ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
922adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐵 = ℕ ∧ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) = (𝐹𝑛))
9391, 92eqtrd 2656 . . . . . . . . . . . . . . . . 17 ((𝐵 = ℕ ∧ 𝑛𝐵) → ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛) = (𝐹𝑛))
94933adant3 1081 . . . . . . . . . . . . . . . 16 ((𝐵 = ℕ ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛) = (𝐹𝑛))
95 id 22 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑛) → 𝑦 = (𝐹𝑛))
9695eqcomd 2628 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐹𝑛) → (𝐹𝑛) = 𝑦)
97963ad2ant3 1084 . . . . . . . . . . . . . . . 16 ((𝐵 = ℕ ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → (𝐹𝑛) = 𝑦)
9885, 94, 973eqtrrd 2661 . . . . . . . . . . . . . . 15 ((𝐵 = ℕ ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → 𝑦 = (𝐴𝑛))
99983adant1l 1318 . . . . . . . . . . . . . 14 (((𝜑𝐵 = ℕ) ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → 𝑦 = (𝐴𝑛))
100 rspe 3003 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑦 = (𝐴𝑛)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
10183, 99, 100syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝐵 = ℕ) ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
1021013exp 1264 . . . . . . . . . . . 12 ((𝜑𝐵 = ℕ) → (𝑛𝐵 → (𝑦 = (𝐹𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))))
10377, 78, 102rexlimd 3026 . . . . . . . . . . 11 ((𝜑𝐵 = ℕ) → (∃𝑛𝐵 𝑦 = (𝐹𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
104103adantr 481 . . . . . . . . . 10 (((𝜑𝐵 = ℕ) ∧ 𝑦𝑌) → (∃𝑛𝐵 𝑦 = (𝐹𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
10576, 104mpd 15 . . . . . . . . 9 (((𝜑𝐵 = ℕ) ∧ 𝑦𝑌) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
106105ralrimiva 2966 . . . . . . . 8 ((𝜑𝐵 = ℕ) → ∀𝑦𝑌𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
10766, 106jca 554 . . . . . . 7 ((𝜑𝐵 = ℕ) → (𝐴:ℕ⟶𝑌 ∧ ∀𝑦𝑌𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
108 dffo3 6374 . . . . . . 7 (𝐴:ℕ–onto𝑌 ↔ (𝐴:ℕ⟶𝑌 ∧ ∀𝑦𝑌𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
109107, 108sylibr 224 . . . . . 6 ((𝜑𝐵 = ℕ) → 𝐴:ℕ–onto𝑌)
110 founiiun 39360 . . . . . 6 (𝐴:ℕ–onto𝑌 𝑌 = 𝑛 ∈ ℕ (𝐴𝑛))
111109, 110syl 17 . . . . 5 ((𝜑𝐵 = ℕ) → 𝑌 = 𝑛 ∈ ℕ (𝐴𝑛))
112 uniun 4456 . . . . . . . 8 (𝑌 ∪ {∅}) = ( 𝑌 {∅})
11315unisn 4451 . . . . . . . . 9 {∅} = ∅
114113uneq2i 3764 . . . . . . . 8 ( 𝑌 {∅}) = ( 𝑌 ∪ ∅)
115 un0 3967 . . . . . . . 8 ( 𝑌 ∪ ∅) = 𝑌
116112, 114, 1153eqtrri 2649 . . . . . . 7 𝑌 = (𝑌 ∪ {∅})
117116a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝑌 = (𝑌 ∪ {∅}))
11824adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐴:ℕ⟶(𝑌 ∪ {∅}))
119 isomenndlem.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ ℕ)
120119adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ⊆ ℕ)
12152necon3bi 2820 . . . . . . . . . . . . . . . . . 18 𝐵 = ℕ → 𝐵 ≠ ℕ)
122121adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ≠ ℕ)
123120, 122jca 554 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 = ℕ) → (𝐵 ⊆ ℕ ∧ 𝐵 ≠ ℕ))
124 df-pss 3590 . . . . . . . . . . . . . . . 16 (𝐵 ⊊ ℕ ↔ (𝐵 ⊆ ℕ ∧ 𝐵 ≠ ℕ))
125123, 124sylibr 224 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ⊊ ℕ)
126 pssnel 4039 . . . . . . . . . . . . . . 15 (𝐵 ⊊ ℕ → ∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵))
127125, 126syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵))
128127adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵))
129 nfv 1843 . . . . . . . . . . . . . 14 𝑛((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅)
130 simprl 794 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → 𝑛 ∈ ℕ)
131 simprl 794 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → 𝑛 ∈ ℕ)
13287a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V)
13323fvmpt2 6291 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
134131, 132, 133syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
135134adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
13613ad2antll 765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → if(𝑛𝐵, (𝐹𝑛), ∅) = ∅)
137 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ∅ → 𝑦 = ∅)
138137eqcomd 2628 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → ∅ = 𝑦)
139138ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → ∅ = 𝑦)
140135, 136, 1393eqtrrd 2661 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → 𝑦 = (𝐴𝑛))
141130, 140, 100syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
142141ex 450 . . . . . . . . . . . . . . 15 ((𝜑𝑦 = ∅) → ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
143142adantlr 751 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
144129, 78, 143exlimd 2087 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → (∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
145128, 144mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
146145adantlr 751 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
147 simplll 798 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → 𝜑)
148 simpl 473 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ (𝑌 ∪ {∅}))
149 elsni 4194 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {∅} → 𝑦 = ∅)
150149con3i 150 . . . . . . . . . . . . . . 15 𝑦 = ∅ → ¬ 𝑦 ∈ {∅})
151150adantl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → ¬ 𝑦 ∈ {∅})
152 elunnel2 39198 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 ∈ {∅}) → 𝑦𝑌)
153148, 151, 152syl2anc 693 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → 𝑦𝑌)
154153adantll 750 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → 𝑦𝑌)
15568adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑌) → 𝐹:𝐵onto𝑌)
156 foelrni 6244 . . . . . . . . . . . . . 14 ((𝐹:𝐵onto𝑌𝑦𝑌) → ∃𝑛𝐵 (𝐹𝑛) = 𝑦)
157155, 73, 156syl2anc 693 . . . . . . . . . . . . 13 ((𝜑𝑦𝑌) → ∃𝑛𝐵 (𝐹𝑛) = 𝑦)
158 nfv 1843 . . . . . . . . . . . . . 14 𝑛(𝜑𝑦𝑌)
159119sselda 3603 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐵) → 𝑛 ∈ ℕ)
1601593adant3 1081 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → 𝑛 ∈ ℕ)
161159, 87, 133sylancl 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐵) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
162161, 3eqtrd 2656 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐵) → (𝐴𝑛) = (𝐹𝑛))
1631623adant3 1081 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → (𝐴𝑛) = (𝐹𝑛))
164 simp3 1063 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → (𝐹𝑛) = 𝑦)
165163, 164eqtr2d 2657 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → 𝑦 = (𝐴𝑛))
166160, 165, 100syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
1671663exp 1264 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛𝐵 → ((𝐹𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))))
168167adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑌) → (𝑛𝐵 → ((𝐹𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))))
169158, 78, 168rexlimd 3026 . . . . . . . . . . . . 13 ((𝜑𝑦𝑌) → (∃𝑛𝐵 (𝐹𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
170157, 169mpd 15 . . . . . . . . . . . 12 ((𝜑𝑦𝑌) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
171147, 154, 170syl2anc 693 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
172146, 171pm2.61dan 832 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
173172ralrimiva 2966 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
174118, 173jca 554 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = ℕ) → (𝐴:ℕ⟶(𝑌 ∪ {∅}) ∧ ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
175 dffo3 6374 . . . . . . . 8 (𝐴:ℕ–onto→(𝑌 ∪ {∅}) ↔ (𝐴:ℕ⟶(𝑌 ∪ {∅}) ∧ ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
176174, 175sylibr 224 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐴:ℕ–onto→(𝑌 ∪ {∅}))
177 founiiun 39360 . . . . . . 7 (𝐴:ℕ–onto→(𝑌 ∪ {∅}) → (𝑌 ∪ {∅}) = 𝑛 ∈ ℕ (𝐴𝑛))
178176, 177syl 17 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = ℕ) → (𝑌 ∪ {∅}) = 𝑛 ∈ ℕ (𝐴𝑛))
179117, 178eqtrd 2656 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝑌 = 𝑛 ∈ ℕ (𝐴𝑛))
180111, 179pm2.61dan 832 . . . 4 (𝜑 𝑌 = 𝑛 ∈ ℕ (𝐴𝑛))
181180fveq2d 6195 . . 3 (𝜑 → (𝑂 𝑌) = (𝑂 𝑛 ∈ ℕ (𝐴𝑛)))
182 uncom 3757 . . . . . . . . 9 ((ℕ ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (ℕ ∖ 𝐵))
183182a1i 11 . . . . . . . 8 (𝜑 → ((ℕ ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (ℕ ∖ 𝐵)))
184 undif 4049 . . . . . . . . 9 (𝐵 ⊆ ℕ ↔ (𝐵 ∪ (ℕ ∖ 𝐵)) = ℕ)
185119, 184sylib 208 . . . . . . . 8 (𝜑 → (𝐵 ∪ (ℕ ∖ 𝐵)) = ℕ)
186183, 185eqtrd 2656 . . . . . . 7 (𝜑 → ((ℕ ∖ 𝐵) ∪ 𝐵) = ℕ)
187186eqcomd 2628 . . . . . 6 (𝜑 → ℕ = ((ℕ ∖ 𝐵) ∪ 𝐵))
188187mpteq1d 4738 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛))) = (𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴𝑛))))
189188fveq2d 6195 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))) = (Σ^‘(𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴𝑛)))))
190 nfv 1843 . . . . 5 𝑛𝜑
191 difexg 4808 . . . . . . 7 (ℕ ∈ V → (ℕ ∖ 𝐵) ∈ V)
19232, 191ax-mp 5 . . . . . 6 (ℕ ∖ 𝐵) ∈ V
193192a1i 11 . . . . 5 (𝜑 → (ℕ ∖ 𝐵) ∈ V)
19432a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
195194, 119ssexd 4805 . . . . 5 (𝜑𝐵 ∈ V)
196 incom 3805 . . . . . . 7 ((ℕ ∖ 𝐵) ∩ 𝐵) = (𝐵 ∩ (ℕ ∖ 𝐵))
197 disjdif 4040 . . . . . . 7 (𝐵 ∩ (ℕ ∖ 𝐵)) = ∅
198196, 197eqtri 2644 . . . . . 6 ((ℕ ∖ 𝐵) ∩ 𝐵) = ∅
199198a1i 11 . . . . 5 (𝜑 → ((ℕ ∖ 𝐵) ∩ 𝐵) = ∅)
200 simpl 473 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → 𝜑)
201 eldifi 3732 . . . . . . 7 (𝑛 ∈ (ℕ ∖ 𝐵) → 𝑛 ∈ ℕ)
202201adantl 482 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → 𝑛 ∈ ℕ)
203 isomenndlem.o . . . . . . . 8 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
204203adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
20531ffvelrnda 6359 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 𝑋)
206204, 205ffvelrnd 6360 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑂‘(𝐴𝑛)) ∈ (0[,]+∞))
207200, 202, 206syl2anc 693 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴𝑛)) ∈ (0[,]+∞))
208159, 206syldan 487 . . . . 5 ((𝜑𝑛𝐵) → (𝑂‘(𝐴𝑛)) ∈ (0[,]+∞))
209190, 193, 195, 199, 207, 208sge0splitmpt 40628 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) = ((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))))
210 eqid 2622 . . . . . . . 8 (𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))) = (𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))
211208, 210fmptd 6385 . . . . . . 7 (𝜑 → (𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))):𝐵⟶(0[,]+∞))
212195, 211sge0xrcl 40602 . . . . . 6 (𝜑 → (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))) ∈ ℝ*)
213212xaddid2d 39535 . . . . 5 (𝜑 → (0 +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))) = (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))))
21487a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V)
215202, 214, 133syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
216 eldifn 3733 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ 𝐵) → ¬ 𝑛𝐵)
217216adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → ¬ 𝑛𝐵)
218217iffalsed 4097 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → if(𝑛𝐵, (𝐹𝑛), ∅) = ∅)
219215, 218eqtrd 2656 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝐴𝑛) = ∅)
220219fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴𝑛)) = (𝑂‘∅))
221 isomenndlem.o0 . . . . . . . . . . 11 (𝜑 → (𝑂‘∅) = 0)
222200, 221syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘∅) = 0)
223220, 222eqtrd 2656 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴𝑛)) = 0)
224223mpteq2dva 4744 . . . . . . . 8 (𝜑 → (𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛))) = (𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0))
225224fveq2d 6195 . . . . . . 7 (𝜑 → (Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) = (Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0)))
226190, 193sge0z 40592 . . . . . . 7 (𝜑 → (Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0)) = 0)
227225, 226eqtrd 2656 . . . . . 6 (𝜑 → (Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) = 0)
228227oveq1d 6665 . . . . 5 (𝜑 → ((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))) = (0 +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))))
229203, 25feqresmpt 6250 . . . . . . 7 (𝜑 → (𝑂𝑌) = (𝑦𝑌 ↦ (𝑂𝑦)))
230229fveq2d 6195 . . . . . 6 (𝜑 → (Σ^‘(𝑂𝑌)) = (Σ^‘(𝑦𝑌 ↦ (𝑂𝑦))))
231 nfv 1843 . . . . . . 7 𝑦𝜑
232 fveq2 6191 . . . . . . 7 (𝑦 = (𝐴𝑛) → (𝑂𝑦) = (𝑂‘(𝐴𝑛)))
233162eqcomd 2628 . . . . . . 7 ((𝜑𝑛𝐵) → (𝐹𝑛) = (𝐴𝑛))
234203adantr 481 . . . . . . . 8 ((𝜑𝑦𝑌) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
23525sselda 3603 . . . . . . . 8 ((𝜑𝑦𝑌) → 𝑦 ∈ 𝒫 𝑋)
236234, 235ffvelrnd 6360 . . . . . . 7 ((𝜑𝑦𝑌) → (𝑂𝑦) ∈ (0[,]+∞))
237231, 190, 232, 195, 4, 233, 236sge0f1o 40599 . . . . . 6 (𝜑 → (Σ^‘(𝑦𝑌 ↦ (𝑂𝑦))) = (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))))
238 eqidd 2623 . . . . . 6 (𝜑 → (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))) = (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))))
239230, 237, 2383eqtrd 2660 . . . . 5 (𝜑 → (Σ^‘(𝑂𝑌)) = (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))))
240213, 228, 2393eqtr4d 2666 . . . 4 (𝜑 → ((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))) = (Σ^‘(𝑂𝑌)))
241189, 209, 2403eqtrrd 2661 . . 3 (𝜑 → (Σ^‘(𝑂𝑌)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))
242181, 241breq12d 4666 . 2 (𝜑 → ((𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)) ↔ (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛))))))
24349, 242mpbird 247 1 (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  wpss 3575  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729  cres 5116  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  0cc0 9936  +∞cpnf 10071  cle 10075  cn 11020   +𝑒 cxad 11944  [,]cicc 12178  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  isomennd  40745
  Copyright terms: Public domain W3C validator