Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoidmvle2 Structured version   Visualization version   GIF version

Theorem hsphoidmvle2 40799
Description: The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoidmvle2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hsphoidmvle2.x (𝜑𝑋 ∈ Fin)
hsphoidmvle2.z (𝜑𝑍 ∈ (𝑋𝑌))
hsphoidmvle2.y 𝑋 = (𝑌 ∪ {𝑍})
hsphoidmvle2.c (𝜑𝐶 ∈ ℝ)
hsphoidmvle2.d (𝜑𝐷 ∈ ℝ)
hsphoidmvle2.e (𝜑𝐶𝐷)
hsphoidmvle2.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
hsphoidmvle2.a (𝜑𝐴:𝑋⟶ℝ)
hsphoidmvle2.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hsphoidmvle2 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑐,𝑗,𝑘   𝐶,𝑎,𝑏,𝑘,𝑥   𝐶,𝑐,𝑗,𝑥   𝐷,𝑎,𝑏,𝑘,𝑥   𝐷,𝑐,𝑗   𝐻,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,𝑗   𝑌,𝑐,𝑗,𝑥   𝑍,𝑐,𝑗,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑐)   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑐)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑘,𝑎,𝑏)   𝑍(𝑎,𝑏)

Proof of Theorem hsphoidmvle2
StepHypRef Expression
1 hsphoidmvle2.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
2 hsphoidmvle2.z . . . . . 6 (𝜑𝑍 ∈ (𝑋𝑌))
32eldifad 3586 . . . . 5 (𝜑𝑍𝑋)
41, 3ffvelrnd 6360 . . . 4 (𝜑 → (𝐴𝑍) ∈ ℝ)
5 hsphoidmvle2.b . . . . . 6 (𝜑𝐵:𝑋⟶ℝ)
65, 3ffvelrnd 6360 . . . . 5 (𝜑 → (𝐵𝑍) ∈ ℝ)
7 hsphoidmvle2.c . . . . 5 (𝜑𝐶 ∈ ℝ)
86, 7ifcld 4131 . . . 4 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ)
9 volicore 40795 . . . 4 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ∈ ℝ)
104, 8, 9syl2anc 693 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ∈ ℝ)
11 hsphoidmvle2.d . . . . 5 (𝜑𝐷 ∈ ℝ)
126, 11ifcld 4131 . . . 4 (𝜑 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ)
13 volicore 40795 . . . 4 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) ∈ ℝ)
144, 12, 13syl2anc 693 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) ∈ ℝ)
15 hsphoidmvle2.x . . . . 5 (𝜑𝑋 ∈ Fin)
16 difssd 3738 . . . . 5 (𝜑 → (𝑋 ∖ {𝑍}) ⊆ 𝑋)
17 ssfi 8180 . . . . 5 ((𝑋 ∈ Fin ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → (𝑋 ∖ {𝑍}) ∈ Fin)
1815, 16, 17syl2anc 693 . . . 4 (𝜑 → (𝑋 ∖ {𝑍}) ∈ Fin)
19 eldifi 3732 . . . . . 6 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘𝑋)
2019adantl 482 . . . . 5 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘𝑋)
211ffvelrnda 6359 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
225ffvelrnda 6359 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
23 volicore 40795 . . . . . 6 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2421, 22, 23syl2anc 693 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2520, 24syldan 487 . . . 4 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2618, 25fprodrecl 14683 . . 3 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
27 nfv 1843 . . . 4 𝑘𝜑
2820, 21syldan 487 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝑘) ∈ ℝ)
2920, 22syldan 487 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵𝑘) ∈ ℝ)
3029rexrd 10089 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵𝑘) ∈ ℝ*)
31 icombl 23332 . . . . . 6 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
3228, 30, 31syl2anc 693 . . . . 5 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
33 volge0 40177 . . . . 5 (((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
3432, 33syl 17 . . . 4 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
3527, 18, 25, 34fprodge0 14724 . . 3 (𝜑 → 0 ≤ ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
368rexrd 10089 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ*)
37 icombl 23332 . . . . 5 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ*) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol)
384, 36, 37syl2anc 693 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol)
3912rexrd 10089 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*)
40 icombl 23332 . . . . 5 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol)
414, 39, 40syl2anc 693 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol)
424rexrd 10089 . . . . 5 (𝜑 → (𝐴𝑍) ∈ ℝ*)
434leidd 10594 . . . . 5 (𝜑 → (𝐴𝑍) ≤ (𝐴𝑍))
446leidd 10594 . . . . . . . 8 (𝜑 → (𝐵𝑍) ≤ (𝐵𝑍))
4544adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ (𝐵𝑍))
46 iftrue 4092 . . . . . . . . 9 ((𝐵𝑍) ≤ 𝐶 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = (𝐵𝑍))
4746adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = (𝐵𝑍))
486adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ∈ ℝ)
497adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐶 ∈ ℝ)
5011adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐷 ∈ ℝ)
51 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ 𝐶)
52 hsphoidmvle2.e . . . . . . . . . . 11 (𝜑𝐶𝐷)
5352adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐶𝐷)
5448, 49, 50, 51, 53letrd 10194 . . . . . . . . 9 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ 𝐷)
5554iftrued 4094 . . . . . . . 8 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = (𝐵𝑍))
5647, 55breq12d 4666 . . . . . . 7 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ↔ (𝐵𝑍) ≤ (𝐵𝑍)))
5745, 56mpbird 247 . . . . . 6 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
58 simpl 473 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝜑)
59 simpr 477 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → ¬ (𝐵𝑍) ≤ 𝐶)
6058, 7syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 ∈ ℝ)
6158, 6syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ∈ ℝ)
6260, 61ltnled 10184 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (𝐶 < (𝐵𝑍) ↔ ¬ (𝐵𝑍) ≤ 𝐶))
6359, 62mpbird 247 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 < (𝐵𝑍))
647adantr 481 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ∈ ℝ)
656adantr 481 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → (𝐵𝑍) ∈ ℝ)
66 simpr 477 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 < (𝐵𝑍))
6764, 65, 66ltled 10185 . . . . . . . . . . 11 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ≤ (𝐵𝑍))
6867adantr 481 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ (𝐵𝑍))
69 iftrue 4092 . . . . . . . . . . . 12 ((𝐵𝑍) ≤ 𝐷 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = (𝐵𝑍))
7069eqcomd 2628 . . . . . . . . . . 11 ((𝐵𝑍) ≤ 𝐷 → (𝐵𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7170adantl 482 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → (𝐵𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7268, 71breqtrd 4679 . . . . . . . . 9 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7352ad2antrr 762 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐶𝐷)
74 iffalse 4095 . . . . . . . . . . . 12 (¬ (𝐵𝑍) ≤ 𝐷 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = 𝐷)
7574eqcomd 2628 . . . . . . . . . . 11 (¬ (𝐵𝑍) ≤ 𝐷𝐷 = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7675adantl 482 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐷 = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7773, 76breqtrd 4679 . . . . . . . . 9 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7872, 77pm2.61dan 832 . . . . . . . 8 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7958, 63, 78syl2anc 693 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
80 iffalse 4095 . . . . . . . . 9 (¬ (𝐵𝑍) ≤ 𝐶 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = 𝐶)
8180adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = 𝐶)
8281breq1d 4663 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ↔ 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
8379, 82mpbird 247 . . . . . 6 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
8457, 83pm2.61dan 832 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
85 icossico 12243 . . . . 5 ((((𝐴𝑍) ∈ ℝ* ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*) ∧ ((𝐴𝑍) ≤ (𝐴𝑍) ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
8642, 39, 43, 84, 85syl22anc 1327 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
87 volss 23301 . . . 4 ((((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol ∧ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol ∧ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ≤ (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
8838, 41, 86, 87syl3anc 1326 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ≤ (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
8910, 14, 26, 35, 88lemul1ad 10963 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ≤ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
90 hsphoidmvle2.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
91 ne0i 3921 . . . . . 6 (𝑍𝑋𝑋 ≠ ∅)
923, 91syl 17 . . . . 5 (𝜑𝑋 ≠ ∅)
93 hsphoidmvle2.h . . . . . 6 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
9493, 7, 15, 5hsphoif 40790 . . . . 5 (𝜑 → ((𝐻𝐶)‘𝐵):𝑋⟶ℝ)
9590, 15, 92, 1, 94hoidmvn0val 40798 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))))
9694ffvelrnda 6359 . . . . . . 7 ((𝜑𝑘𝑋) → (((𝐻𝐶)‘𝐵)‘𝑘) ∈ ℝ)
97 volicore 40795 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (((𝐻𝐶)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℝ)
9821, 96, 97syl2anc 693 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℝ)
9998recnd 10068 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℂ)
100 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
101 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝑍 → (((𝐻𝐶)‘𝐵)‘𝑘) = (((𝐻𝐶)‘𝐵)‘𝑍))
102100, 101oveq12d 6668 . . . . . . . 8 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)) = ((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍)))
103102fveq2d 6195 . . . . . . 7 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))))
104103adantl 482 . . . . . 6 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))))
10593, 7, 15, 5, 3hsphoival 40793 . . . . . . . . . 10 (𝜑 → (((𝐻𝐶)‘𝐵)‘𝑍) = if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)))
1062eldifbd 3587 . . . . . . . . . . 11 (𝜑 → ¬ 𝑍𝑌)
107106iffalsed 4097 . . . . . . . . . 10 (𝜑 → if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) = if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))
108105, 107eqtrd 2656 . . . . . . . . 9 (𝜑 → (((𝐻𝐶)‘𝐵)‘𝑍) = if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))
109108oveq2d 6666 . . . . . . . 8 (𝜑 → ((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍)) = ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)))
110109fveq2d 6195 . . . . . . 7 (𝜑 → (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
111110adantr 481 . . . . . 6 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
112104, 111eqtrd 2656 . . . . 5 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
11315, 99, 3, 112fprodsplit1 39825 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)))))
1147adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐶 ∈ ℝ)
11515adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑋 ∈ Fin)
1165adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐵:𝑋⟶ℝ)
11793, 114, 115, 116, 20hsphoival 40793 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐶)‘𝐵)‘𝑘) = if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐶, (𝐵𝑘), 𝐶)))
118 hsphoidmvle2.y . . . . . . . . . . . . 13 𝑋 = (𝑌 ∪ {𝑍})
11919, 118syl6eleq 2711 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ (𝑌 ∪ {𝑍}))
120 eldifn 3733 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝑍}) → ¬ 𝑘 ∈ {𝑍})
121 elunnel2 39198 . . . . . . . . . . . 12 ((𝑘 ∈ (𝑌 ∪ {𝑍}) ∧ ¬ 𝑘 ∈ {𝑍}) → 𝑘𝑌)
122119, 120, 121syl2anc 693 . . . . . . . . . . 11 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘𝑌)
123122adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘𝑌)
124123iftrued 4094 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐶, (𝐵𝑘), 𝐶)) = (𝐵𝑘))
125117, 124eqtrd 2656 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐶)‘𝐵)‘𝑘) = (𝐵𝑘))
126125oveq2d 6666 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
127126fveq2d 6195 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
128127prodeq2dv 14653 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
129128oveq2d 6666 . . . 4 (𝜑 → ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
13095, 113, 1293eqtrd 2660 . . 3 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
13193, 11, 15, 5hsphoif 40790 . . . . 5 (𝜑 → ((𝐻𝐷)‘𝐵):𝑋⟶ℝ)
13290, 15, 92, 1, 131hoidmvn0val 40798 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))))
133131ffvelrnda 6359 . . . . . . 7 ((𝜑𝑘𝑋) → (((𝐻𝐷)‘𝐵)‘𝑘) ∈ ℝ)
134 volicore 40795 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (((𝐻𝐷)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℝ)
13521, 133, 134syl2anc 693 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℝ)
136135recnd 10068 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℂ)
137 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑍 → (((𝐻𝐷)‘𝐵)‘𝑘) = (((𝐻𝐷)‘𝐵)‘𝑍))
138100, 137oveq12d 6668 . . . . . . 7 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)) = ((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍)))
139138fveq2d 6195 . . . . . 6 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))))
140139adantl 482 . . . . 5 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))))
14115, 136, 3, 140fprodsplit1 39825 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = ((vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)))))
14293, 11, 15, 5, 3hsphoival 40793 . . . . . . . 8 (𝜑 → (((𝐻𝐷)‘𝐵)‘𝑍) = if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
143106iffalsed 4097 . . . . . . . 8 (𝜑 → if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
144142, 143eqtrd 2656 . . . . . . 7 (𝜑 → (((𝐻𝐷)‘𝐵)‘𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
145144oveq2d 6666 . . . . . 6 (𝜑 → ((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍)) = ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
146145fveq2d 6195 . . . . 5 (𝜑 → (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
14711adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐷 ∈ ℝ)
14893, 147, 115, 116, 20hsphoival 40793 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐷)‘𝐵)‘𝑘) = if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐷, (𝐵𝑘), 𝐷)))
149123iftrued 4094 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐷, (𝐵𝑘), 𝐷)) = (𝐵𝑘))
150148, 149eqtrd 2656 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐷)‘𝐵)‘𝑘) = (𝐵𝑘))
151150oveq2d 6666 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
152151fveq2d 6195 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
153152prodeq2dv 14653 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
154146, 153oveq12d 6668 . . . 4 (𝜑 → ((vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
155132, 141, 1543eqtrd 2660 . . 3 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
156130, 155breq12d 4666 . 2 (𝜑 → ((𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) ↔ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ≤ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))))
15789, 156mpbird 247 1 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cun 3572  wss 3574  c0 3915  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Fincfn 7955  cr 9935  0cc0 9936   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  [,)cico 12177  cprod 14635  volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  hoidmvlelem1  40809  hoidmvlelem2  40810
  Copyright terms: Public domain W3C validator