Proof of Theorem hsphoidmvle
| Step | Hyp | Ref
| Expression |
| 1 | | hsphoidmvle.a |
. . . . 5
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| 2 | | hsphoidmvle.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 3 | 2 | eldifad 3586 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑋) |
| 4 | 1, 3 | ffvelrnd 6360 |
. . . 4
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
| 5 | | hsphoidmvle.b |
. . . . . 6
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| 6 | 5, 3 | ffvelrnd 6360 |
. . . . 5
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
| 7 | | hsphoidmvle.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 8 | 6, 7 | ifcld 4131 |
. . . 4
⊢ (𝜑 → if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ∈ ℝ) |
| 9 | | volicore 40795 |
. . . 4
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ∈ ℝ) → (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) ∈ ℝ) |
| 10 | 4, 8, 9 | syl2anc 693 |
. . 3
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) ∈ ℝ) |
| 11 | | volicore 40795 |
. . . 4
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℝ) |
| 12 | 4, 6, 11 | syl2anc 693 |
. . 3
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℝ) |
| 13 | | hsphoidmvle.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 14 | | difssd 3738 |
. . . . 5
⊢ (𝜑 → (𝑋 ∖ {𝑍}) ⊆ 𝑋) |
| 15 | | ssfi 8180 |
. . . . 5
⊢ ((𝑋 ∈ Fin ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → (𝑋 ∖ {𝑍}) ∈ Fin) |
| 16 | 13, 14, 15 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝑋 ∖ {𝑍}) ∈ Fin) |
| 17 | | eldifi 3732 |
. . . . . 6
⊢ (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ 𝑋) |
| 18 | 17 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘 ∈ 𝑋) |
| 19 | 1 | ffvelrnda 6359 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
| 20 | 5 | ffvelrnda 6359 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
| 21 | | volicore 40795 |
. . . . . 6
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
| 22 | 19, 20, 21 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
| 23 | 18, 22 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
| 24 | 16, 23 | fprodrecl 14683 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
| 25 | | nfv 1843 |
. . . 4
⊢
Ⅎ𝑘𝜑 |
| 26 | 18, 19 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐴‘𝑘) ∈ ℝ) |
| 27 | 18, 20 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵‘𝑘) ∈ ℝ) |
| 28 | 27 | rexrd 10089 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵‘𝑘) ∈
ℝ*) |
| 29 | | icombl 23332 |
. . . . . 6
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ*) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) |
| 30 | 26, 28, 29 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol) |
| 31 | | volge0 40177 |
. . . . 5
⊢ (((𝐴‘𝑘)[,)(𝐵‘𝑘)) ∈ dom vol → 0 ≤
(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 32 | 30, 31 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 0 ≤ (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 33 | 25, 16, 23, 32 | fprodge0 14724 |
. . 3
⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 34 | 8 | rexrd 10089 |
. . . . 5
⊢ (𝜑 → if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ∈
ℝ*) |
| 35 | | icombl 23332 |
. . . . 5
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ∈ ℝ*) → ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ∈ dom vol) |
| 36 | 4, 34, 35 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ∈ dom vol) |
| 37 | 6 | rexrd 10089 |
. . . . 5
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
| 38 | | icombl 23332 |
. . . . 5
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ*) → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ∈ dom vol) |
| 39 | 4, 37, 38 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ∈ dom vol) |
| 40 | 4 | rexrd 10089 |
. . . . 5
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
| 41 | 4 | leidd 10594 |
. . . . 5
⊢ (𝜑 → (𝐴‘𝑍) ≤ (𝐴‘𝑍)) |
| 42 | | min1 12020 |
. . . . . 6
⊢ (((𝐵‘𝑍) ∈ ℝ ∧ 𝐶 ∈ ℝ) → if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ≤ (𝐵‘𝑍)) |
| 43 | 6, 7, 42 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ≤ (𝐵‘𝑍)) |
| 44 | | icossico 12243 |
. . . . 5
⊢ ((((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ*) ∧ ((𝐴‘𝑍) ≤ (𝐴‘𝑍) ∧ if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶) ≤ (𝐵‘𝑍))) → ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ⊆ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 45 | 40, 37, 41, 43, 44 | syl22anc 1327 |
. . . 4
⊢ (𝜑 → ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ⊆ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 46 | | volss 23301 |
. . . 4
⊢ ((((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ∈ dom vol ∧ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ∈ dom vol ∧ ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) ⊆ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) ≤ (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 47 | 36, 39, 45, 46 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) ≤ (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 48 | 10, 12, 24, 33, 47 | lemul1ad 10963 |
. 2
⊢ (𝜑 → ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ≤ ((vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 49 | | hsphoidmvle.l |
. . . . 5
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 50 | | ne0i 3921 |
. . . . . 6
⊢ (𝑍 ∈ 𝑋 → 𝑋 ≠ ∅) |
| 51 | 3, 50 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ ∅) |
| 52 | | hsphoidmvle.h |
. . . . . 6
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
| 53 | 52, 7, 13, 5 | hsphoif 40790 |
. . . . 5
⊢ (𝜑 → ((𝐻‘𝐶)‘𝐵):𝑋⟶ℝ) |
| 54 | 49, 13, 51, 1, 53 | hoidmvn0val 40798 |
. . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘)))) |
| 55 | 53 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (((𝐻‘𝐶)‘𝐵)‘𝑘) ∈ ℝ) |
| 56 | | volicore 40795 |
. . . . . . 7
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (((𝐻‘𝐶)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) ∈ ℝ) |
| 57 | 19, 55, 56 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) ∈ ℝ) |
| 58 | 57 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) ∈ ℂ) |
| 59 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑘 = 𝑍 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
| 60 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑘 = 𝑍 → (((𝐻‘𝐶)‘𝐵)‘𝑘) = (((𝐻‘𝐶)‘𝐵)‘𝑍)) |
| 61 | 59, 60 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘)) = ((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍))) |
| 62 | 61 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑘 = 𝑍 → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍)))) |
| 63 | 62 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍)))) |
| 64 | 52, 7, 13, 5, 3 | hsphoival 40793 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐻‘𝐶)‘𝐵)‘𝑍) = if(𝑍 ∈ 𝑌, (𝐵‘𝑍), if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) |
| 65 | 2 | eldifbd 3587 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
| 66 | 65 | iffalsed 4097 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑍 ∈ 𝑌, (𝐵‘𝑍), if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) = if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) |
| 67 | 64, 66 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐻‘𝐶)‘𝐵)‘𝑍) = if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)) |
| 68 | 67 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍)) = ((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) |
| 69 | 68 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)))) |
| 70 | 69 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → (vol‘((𝐴‘𝑍)[,)(((𝐻‘𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)))) |
| 71 | 63, 70 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶)))) |
| 72 | 13, 58, 3, 71 | fprodsplit1 39825 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))))) |
| 73 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐶 ∈ ℝ) |
| 74 | 13 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑋 ∈ Fin) |
| 75 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐵:𝑋⟶ℝ) |
| 76 | 52, 73, 74, 75, 18 | hsphoival 40793 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻‘𝐶)‘𝐵)‘𝑘) = if(𝑘 ∈ 𝑌, (𝐵‘𝑘), if((𝐵‘𝑘) ≤ 𝐶, (𝐵‘𝑘), 𝐶))) |
| 77 | | hsphoidmvle.y |
. . . . . . . . . . . . 13
⊢ 𝑋 = (𝑌 ∪ {𝑍}) |
| 78 | 17, 77 | syl6eleq 2711 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
| 79 | | eldifn 3733 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑋 ∖ {𝑍}) → ¬ 𝑘 ∈ {𝑍}) |
| 80 | | elunnel2 39198 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ (𝑌 ∪ {𝑍}) ∧ ¬ 𝑘 ∈ {𝑍}) → 𝑘 ∈ 𝑌) |
| 81 | 78, 79, 80 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ 𝑌) |
| 82 | 81 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘 ∈ 𝑌) |
| 83 | 82 | iftrued 4094 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘 ∈ 𝑌, (𝐵‘𝑘), if((𝐵‘𝑘) ≤ 𝐶, (𝐵‘𝑘), 𝐶)) = (𝐵‘𝑘)) |
| 84 | 76, 83 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻‘𝐶)‘𝐵)‘𝑘) = (𝐵‘𝑘)) |
| 85 | 84 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 86 | 85 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 87 | 86 | prodeq2dv 14653 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 88 | 87 | oveq2d 6666 |
. . . 4
⊢ (𝜑 → ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(((𝐻‘𝐶)‘𝐵)‘𝑘)))) = ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 89 | 54, 72, 88 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) = ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 90 | 49, 1, 5, 13 | hoidmvval 40791 |
. . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 91 | 51 | neneqd 2799 |
. . . . 5
⊢ (𝜑 → ¬ 𝑋 = ∅) |
| 92 | 91 | iffalsed 4097 |
. . . 4
⊢ (𝜑 → if(𝑋 = ∅, 0, ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 93 | 22 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
| 94 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = 𝑍 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
| 95 | 59, 94 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 96 | 95 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = 𝑍 → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 97 | 96 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = 𝑍) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 98 | 13, 93, 3, 97 | fprodsplit1 39825 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ((vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 99 | 90, 92, 98 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = ((vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))))) |
| 100 | 89, 99 | breq12d 4666 |
. 2
⊢ (𝜑 → ((𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) ≤ (𝐴(𝐿‘𝑋)𝐵) ↔ ((vol‘((𝐴‘𝑍)[,)if((𝐵‘𝑍) ≤ 𝐶, (𝐵‘𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) ≤ ((vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))))) |
| 101 | 48, 100 | mpbird 247 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝐻‘𝐶)‘𝐵)) ≤ (𝐴(𝐿‘𝑋)𝐵)) |