MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2d Structured version   Visualization version   GIF version

Theorem en2d 7991
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en2d.1 (𝜑𝐴 ∈ V)
en2d.2 (𝜑𝐵 ∈ V)
en2d.3 (𝜑 → (𝑥𝐴𝐶 ∈ V))
en2d.4 (𝜑 → (𝑦𝐵𝐷 ∈ V))
en2d.5 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
Assertion
Ref Expression
en2d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en2d
StepHypRef Expression
1 en2d.1 . 2 (𝜑𝐴 ∈ V)
2 en2d.2 . 2 (𝜑𝐵 ∈ V)
3 eqid 2622 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
4 en2d.3 . . . 4 (𝜑 → (𝑥𝐴𝐶 ∈ V))
54imp 445 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ V)
6 en2d.4 . . . 4 (𝜑 → (𝑦𝐵𝐷 ∈ V))
76imp 445 . . 3 ((𝜑𝑦𝐵) → 𝐷 ∈ V)
8 en2d.5 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
93, 5, 7, 8f1od 6885 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1-onto𝐵)
10 f1oen2g 7972 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ (𝑥𝐴𝐶):𝐴1-1-onto𝐵) → 𝐴𝐵)
111, 2, 9, 10syl3anc 1326 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  cmpt 4729  1-1-ontowf1o 5887  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-en 7956
This theorem is referenced by:  en2i  7993  map1  8036  gicsubgen  17721  lzenom  37333  mapsnend  39391
  Copyright terms: Public domain W3C validator