MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map1 Structured version   Visualization version   GIF version

Theorem map1 8036
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1 (𝐴𝑉 → (1𝑜𝑚 𝐴) ≈ 1𝑜)

Proof of Theorem map1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6680 . 2 (𝐴𝑉 → (1𝑜𝑚 𝐴) ∈ V)
2 df1o2 7572 . . . 4 1𝑜 = {∅}
3 p0ex 4853 . . . 4 {∅} ∈ V
42, 3eqeltri 2697 . . 3 1𝑜 ∈ V
54a1i 11 . 2 (𝐴𝑉 → 1𝑜 ∈ V)
6 0ex 4790 . . 3 ∅ ∈ V
762a1i 12 . 2 (𝐴𝑉 → (𝑥 ∈ (1𝑜𝑚 𝐴) → ∅ ∈ V))
8 xpexg 6960 . . . 4 ((𝐴𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V)
93, 8mpan2 707 . . 3 (𝐴𝑉 → (𝐴 × {∅}) ∈ V)
109a1d 25 . 2 (𝐴𝑉 → (𝑦 ∈ 1𝑜 → (𝐴 × {∅}) ∈ V))
11 el1o 7579 . . . . 5 (𝑦 ∈ 1𝑜𝑦 = ∅)
1211a1i 11 . . . 4 (𝐴𝑉 → (𝑦 ∈ 1𝑜𝑦 = ∅))
132oveq1i 6660 . . . . . . 7 (1𝑜𝑚 𝐴) = ({∅} ↑𝑚 𝐴)
1413eleq2i 2693 . . . . . 6 (𝑥 ∈ (1𝑜𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴))
15 elmapg 7870 . . . . . . 7 (({∅} ∈ V ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
163, 15mpan 706 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
1714, 16syl5bb 272 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (1𝑜𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
186fconst2 6470 . . . . 5 (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅}))
1917, 18syl6rbb 277 . . . 4 (𝐴𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1𝑜𝑚 𝐴)))
2012, 19anbi12d 747 . . 3 (𝐴𝑉 → ((𝑦 ∈ 1𝑜𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1𝑜𝑚 𝐴))))
21 ancom 466 . . 3 ((𝑦 = ∅ ∧ 𝑥 ∈ (1𝑜𝑚 𝐴)) ↔ (𝑥 ∈ (1𝑜𝑚 𝐴) ∧ 𝑦 = ∅))
2220, 21syl6rbb 277 . 2 (𝐴𝑉 → ((𝑥 ∈ (1𝑜𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1𝑜𝑥 = (𝐴 × {∅}))))
231, 5, 7, 10, 22en2d 7991 1 (𝐴𝑉 → (1𝑜𝑚 𝐴) ≈ 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177   class class class wbr 4653   × cxp 5112  wf 5884  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-map 7859  df-en 7956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator