MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem1 Structured version   Visualization version   GIF version

Theorem dvfsumlem1 23789
Description: Lemma for dvfsumrlim 23794. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem1
StepHypRef Expression
1 dvfsum.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
2 ioossre 12235 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3635 . . . . . . . . 9 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . . 9 (𝜑𝑌𝑆)
53, 4sseldi 3601 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . 10 (𝜑𝑋𝑆)
73, 6sseldi 3601 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87flcld 12599 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℤ)
9 reflcl 12597 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
107, 9syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ∈ ℝ)
11 flle 12600 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
127, 11syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
13 dvfsumlem1.4 . . . . . . . . 9 (𝜑𝑋𝑌)
1410, 7, 5, 12, 13letrd 10194 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑌)
15 flbi 12617 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ ((⌊‘𝑋) ≤ 𝑌𝑌 < ((⌊‘𝑋) + 1))))
1615baibd 948 . . . . . . . 8 (((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) ∧ (⌊‘𝑋) ≤ 𝑌) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
175, 8, 14, 16syl21anc 1325 . . . . . . 7 (𝜑 → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
1817biimpar 502 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = (⌊‘𝑋))
1918oveq2d 6666 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − (⌊‘𝑋)))
2019oveq1d 6665 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵))
2118oveq2d 6666 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...(⌊‘𝑋)))
2221sumeq1d 14431 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
2322oveq1d 6665 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴))
2420, 23oveq12d 6668 . . 3 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
25 simpr 477 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 = ((⌊‘𝑋) + 1))
267adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑋 ∈ ℝ)
2726flcld 12599 . . . . . . . . . . . 12 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑋) ∈ ℤ)
2827peano2zd 11485 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((⌊‘𝑋) + 1) ∈ ℤ)
2925, 28eqeltrd 2701 . . . . . . . . . 10 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 ∈ ℤ)
30 flid 12609 . . . . . . . . . 10 (𝑌 ∈ ℤ → (⌊‘𝑌) = 𝑌)
3129, 30syl 17 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = 𝑌)
3231, 25eqtrd 2656 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = ((⌊‘𝑋) + 1))
3332oveq2d 6666 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − ((⌊‘𝑋) + 1)))
3433oveq1d 6665 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
355recnd 10068 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
3610recnd 10068 . . . . . . . . . 10 (𝜑 → (⌊‘𝑋) ∈ ℂ)
3735, 36subcld 10392 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
38 1cnd 10056 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
393a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℝ)
40 dvfsum.a . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
41 dvfsum.b1 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐵𝑉)
42 dvfsum.b3 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
4339, 40, 41, 42dvmptrecl 23787 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
4443recnd 10068 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
4544ralrimiva 2966 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
46 nfcsb1v 3549 . . . . . . . . . . . 12 𝑥𝑌 / 𝑥𝐵
4746nfel1 2779 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐵 ∈ ℂ
48 csbeq1a 3542 . . . . . . . . . . . 12 (𝑥 = 𝑌𝐵 = 𝑌 / 𝑥𝐵)
4948eleq1d 2686 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐵 ∈ ℂ ↔ 𝑌 / 𝑥𝐵 ∈ ℂ))
5047, 49rspc 3303 . . . . . . . . . 10 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℂ → 𝑌 / 𝑥𝐵 ∈ ℂ))
514, 45, 50sylc 65 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
5237, 38, 51subdird 10487 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
5335, 36, 38subsub4d 10423 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) = (𝑌 − ((⌊‘𝑋) + 1)))
5453oveq1d 6665 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
5551mulid2d 10058 . . . . . . . . 9 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
5655oveq2d 6666 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5752, 54, 563eqtr3d 2664 . . . . . . 7 (𝜑 → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5857adantr 481 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5934, 58eqtrd 2656 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
60 dvfsum.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
618peano2zd 11485 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℤ)
6260zred 11482 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
63 peano2rem 10348 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℝ)
65 dvfsum.d . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
66 dvfsum.md . . . . . . . . . . . . . . . 16 (𝜑𝑀 ≤ (𝐷 + 1))
67 1red 10055 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6862, 67, 65lesubaddd 10624 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) ≤ 𝐷𝑀 ≤ (𝐷 + 1)))
6966, 68mpbird 247 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ≤ 𝐷)
70 dvfsumlem1.3 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑋)
7164, 65, 7, 69, 70letrd 10194 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ≤ 𝑋)
72 peano2zm 11420 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7360, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℤ)
74 flge 12606 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
757, 73, 74syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
7671, 75mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ≤ (⌊‘𝑋))
7762, 67, 10lesubaddd 10624 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 − 1) ≤ (⌊‘𝑋) ↔ 𝑀 ≤ ((⌊‘𝑋) + 1)))
7876, 77mpbid 222 . . . . . . . . . . . 12 (𝜑𝑀 ≤ ((⌊‘𝑋) + 1))
79 eluz2 11693 . . . . . . . . . . . 12 (((⌊‘𝑋) + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ ((⌊‘𝑋) + 1) ∈ ℤ ∧ 𝑀 ≤ ((⌊‘𝑋) + 1)))
8060, 61, 78, 79syl3anbrc 1246 . . . . . . . . . . 11 (𝜑 → ((⌊‘𝑋) + 1) ∈ (ℤ𝑀))
81 dvfsum.b2 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
8281recnd 10068 . . . . . . . . . . . . 13 ((𝜑𝑥𝑍) → 𝐵 ∈ ℂ)
8382ralrimiva 2966 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℂ)
84 elfzuz 12338 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘 ∈ (ℤ𝑀))
85 dvfsum.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
8684, 85syl6eleqr 2712 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘𝑍)
87 dvfsum.c . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝐵 = 𝐶)
8887eleq1d 2686 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
8988rspccva 3308 . . . . . . . . . . . 12 ((∀𝑥𝑍 𝐵 ∈ ℂ ∧ 𝑘𝑍) → 𝐶 ∈ ℂ)
9083, 86, 89syl2an 494 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))) → 𝐶 ∈ ℂ)
91 eqvisset 3211 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) ∈ V)
92 eqeq2 2633 . . . . . . . . . . . . . . 15 (𝑘 = ((⌊‘𝑋) + 1) → (𝑥 = 𝑘𝑥 = ((⌊‘𝑋) + 1)))
9392biimpar 502 . . . . . . . . . . . . . 14 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝑥 = 𝑘)
9493, 87syl 17 . . . . . . . . . . . . 13 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝐵 = 𝐶)
9591, 94csbied 3560 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) / 𝑥𝐵 = 𝐶)
9695eqcomd 2628 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑋) + 1) → 𝐶 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
9780, 90, 96fsumm1 14480 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
98 ax-1cn 9994 . . . . . . . . . . . . . 14 1 ∈ ℂ
99 pncan 10287 . . . . . . . . . . . . . 14 (((⌊‘𝑋) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
10036, 98, 99sylancl 694 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
101100oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → (𝑀...(((⌊‘𝑋) + 1) − 1)) = (𝑀...(⌊‘𝑋)))
102101sumeq1d 14431 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
103102oveq1d 6665 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10497, 103eqtrd 2656 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
105104adantr 481 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10632oveq2d 6666 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...((⌊‘𝑋) + 1)))
107106sumeq1d 14431 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶)
10825csbeq1d 3540 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
109108oveq2d 6666 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
110105, 107, 1093eqtr4d 2666 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵))
111110oveq1d 6665 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
112 fzfid 12772 . . . . . . . . 9 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
113 elfzuz 12338 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
114113, 85syl6eleqr 2712 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
11583, 114, 89syl2an 494 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
116112, 115fsumcl 14464 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
11740recnd 10068 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
118117ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℂ)
119 nfcsb1v 3549 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐴
120119nfel1 2779 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴 ∈ ℂ
121 csbeq1a 3542 . . . . . . . . . . 11 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
122121eleq1d 2686 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐴 ∈ ℂ ↔ 𝑌 / 𝑥𝐴 ∈ ℂ))
123120, 122rspc 3303 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℂ → 𝑌 / 𝑥𝐴 ∈ ℂ))
1244, 118, 123sylc 65 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
125116, 51, 124addsubd 10413 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
126125adantr 481 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
127111, 126eqtrd 2656 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
12859, 127oveq12d 6668 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)))
12937, 51mulcld 10060 . . . . . 6 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
130129adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
13151adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 ∈ ℂ)
132116, 124subcld 10392 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
133132adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
134130, 131, 133nppcan3d 10419 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
135128, 134eqtrd 2656 . . 3 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
136 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
137 peano2re 10209 . . . . . 6 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
13810, 137syl 17 . . . . 5 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
1395, 138leloed 10180 . . . 4 (𝜑 → (𝑌 ≤ ((⌊‘𝑋) + 1) ↔ (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1))))
140136, 139mpbid 222 . . 3 (𝜑 → (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1)))
14124, 135, 140mpjaodan 827 . 2 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
142 ovex 6678 . . 3 (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V
143 nfcv 2764 . . . 4 𝑥𝑌
144 nfcv 2764 . . . . . 6 𝑥(𝑌 − (⌊‘𝑌))
145 nfcv 2764 . . . . . 6 𝑥 ·
146144, 145, 46nfov 6676 . . . . 5 𝑥((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)
147 nfcv 2764 . . . . 5 𝑥 +
148 nfcv 2764 . . . . . 6 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
149 nfcv 2764 . . . . . 6 𝑥
150148, 149, 119nfov 6676 . . . . 5 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
151146, 147, 150nfov 6676 . . . 4 𝑥(((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
152 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
153 fveq2 6191 . . . . . . 7 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
154152, 153oveq12d 6668 . . . . . 6 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
155154, 48oveq12d 6668 . . . . 5 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
156153oveq2d 6666 . . . . . . 7 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
157156sumeq1d 14431 . . . . . 6 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
158157, 121oveq12d 6668 . . . . 5 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
159155, 158oveq12d 6668 . . . 4 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
160 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
161143, 151, 159, 160fvmptf 6301 . . 3 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V) → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
1624, 142, 161sylancl 694 . 2 (𝜑 → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
163129, 124, 116subadd23d 10414 . 2 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
164141, 162, 1633eqtr4d 2666 1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  csb 3533  wss 3574   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cz 11377  cuz 11687  (,)cioo 12175  ...cfz 12326  cfl 12591  Σcsu 14416   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvfsumlem2  23790
  Copyright terms: Public domain W3C validator