MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1lem Structured version   Visualization version   GIF version

Theorem evl1fval1lem 19694
Description: Lemma for evl1fval1 19695. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1lem (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))

Proof of Theorem evl1fval1lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (eval1𝑅) = (eval1𝑅)
2 eqid 2622 . . 3 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
3 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 19692 . 2 (eval1𝑅) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅))
5 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
65a1i 11 . 2 (𝑅𝑉𝑄 = (eval1𝑅))
7 fvex 6201 . . . . . 6 (Base‘𝑅) ∈ V
83, 7eqeltri 2697 . . . . 5 𝐵 ∈ V
98pwid 4174 . . . 4 𝐵 ∈ 𝒫 𝐵
10 eqid 2622 . . . . 5 (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵)
11 eqid 2622 . . . . 5 (1𝑜 evalSub 𝑅) = (1𝑜 evalSub 𝑅)
1210, 11, 3evls1fval 19684 . . . 4 ((𝑅𝑉𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑅)‘𝐵)))
139, 12mpan2 707 . . 3 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑅)‘𝐵)))
142, 3evlval 19524 . . . . 5 (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘𝐵)
1514eqcomi 2631 . . . 4 ((1𝑜 evalSub 𝑅)‘𝐵) = (1𝑜 eval 𝑅)
1615coeq2i 5282 . . 3 ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅))
1713, 16syl6eq 2672 . 2 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅)))
184, 6, 173eqtr4a 2682 1 (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  𝒫 cpw 4158  {csn 4177  cmpt 4729   × cxp 5112  ccom 5118  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  Basecbs 15857   evalSub ces 19504   eval cevl 19505   evalSub1 ces1 19678  eval1ce1 19679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-evls 19506  df-evl 19507  df-evls1 19680  df-evl1 19681
This theorem is referenced by:  evl1fval1  19695
  Copyright terms: Public domain W3C validator