![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlval | Structured version Visualization version GIF version |
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evlval.q | ⊢ 𝑄 = (𝐼 eval 𝑅) |
evlval.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evlval | ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlval.q | . 2 ⊢ 𝑄 = (𝐼 eval 𝑅) | |
2 | oveq12 6659 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 evalSub 𝑟) = (𝐼 evalSub 𝑅)) | |
3 | fveq2 6191 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
4 | evlval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | syl6eqr 2674 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘𝑟) = 𝐵) |
7 | 2, 6 | fveq12d 6197 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑖 evalSub 𝑟)‘(Base‘𝑟)) = ((𝐼 evalSub 𝑅)‘𝐵)) |
8 | df-evl 19507 | . . . 4 ⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) | |
9 | fvex 6201 | . . . 4 ⊢ ((𝐼 evalSub 𝑅)‘𝐵) ∈ V | |
10 | 7, 8, 9 | ovmpt2a 6791 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
11 | 8 | mpt2ndm0 6875 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ∅) |
12 | 0fv 6227 | . . . . 5 ⊢ (∅‘𝐵) = ∅ | |
13 | 11, 12 | syl6eqr 2674 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = (∅‘𝐵)) |
14 | reldmevls 19517 | . . . . . 6 ⊢ Rel dom evalSub | |
15 | 14 | ovprc 6683 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 evalSub 𝑅) = ∅) |
16 | 15 | fveq1d 6193 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 evalSub 𝑅)‘𝐵) = (∅‘𝐵)) |
17 | 13, 16 | eqtr4d 2659 | . . 3 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵)) |
18 | 10, 17 | pm2.61i 176 | . 2 ⊢ (𝐼 eval 𝑅) = ((𝐼 evalSub 𝑅)‘𝐵) |
19 | 1, 18 | eqtri 2644 | 1 ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 evalSub ces 19504 eval cevl 19505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-evls 19506 df-evl 19507 |
This theorem is referenced by: evlrhm 19525 evlsscasrng 19526 evlsvarsrng 19528 evl1fval1lem 19694 evl1sca 19698 evl1var 19700 pf1rcl 19713 mpfpf1 19715 pf1ind 19719 mzpmfp 37310 |
Copyright terms: Public domain | W3C validator |