Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidresid Structured version   Visualization version   GIF version

Theorem exidresid 33678
Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1 𝑋 = ran 𝐺
exidres.2 𝑈 = (GId‘𝐺)
exidres.3 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
exidresid (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)

Proof of Theorem exidresid
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exidres.3 . . . . . 6 𝐻 = (𝐺 ↾ (𝑌 × 𝑌))
2 resexg 5442 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐺 ↾ (𝑌 × 𝑌)) ∈ V)
31, 2syl5eqel 2705 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → 𝐻 ∈ V)
4 eqid 2622 . . . . . 6 ran 𝐻 = ran 𝐻
54gidval 27366 . . . . 5 (𝐻 ∈ V → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
63, 5syl 17 . . . 4 (𝐺 ∈ (Magma ∩ ExId ) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
763ad2ant1 1082 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
87adantr 481 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))
9 exidres.1 . . . . . . 7 𝑋 = ran 𝐺
10 exidres.2 . . . . . . 7 𝑈 = (GId‘𝐺)
119, 10, 1exidreslem 33676 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
1211simprd 479 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
1312adantr 481 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
149, 10, 1exidres 33677 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝐻 ∈ ExId )
15 elin 3796 . . . . . . . 8 (𝐻 ∈ (Magma ∩ ExId ) ↔ (𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ))
16 rngopidOLD 33652 . . . . . . . 8 (𝐻 ∈ (Magma ∩ ExId ) → ran 𝐻 = dom dom 𝐻)
1715, 16sylbir 225 . . . . . . 7 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ran 𝐻 = dom dom 𝐻)
1817ancoms 469 . . . . . 6 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
1914, 18sylan 488 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ran 𝐻 = dom dom 𝐻)
2019raleqdv 3144 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
2113, 20mpbird 247 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))
2211simpld 475 . . . . . 6 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝑈 ∈ dom dom 𝐻)
2322adantr 481 . . . . 5 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ dom dom 𝐻)
2423, 19eleqtrrd 2704 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → 𝑈 ∈ ran 𝐻)
254exidu1 33655 . . . . . . 7 (𝐻 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2615, 25sylbir 225 . . . . . 6 ((𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2726ancoms 469 . . . . 5 ((𝐻 ∈ ExId ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
2814, 27sylan 488 . . . 4 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
29 oveq1 6657 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢𝐻𝑥) = (𝑈𝐻𝑥))
3029eqeq1d 2624 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑈𝐻𝑥) = 𝑥))
31 oveq2 6658 . . . . . . . 8 (𝑢 = 𝑈 → (𝑥𝐻𝑢) = (𝑥𝐻𝑈))
3231eqeq1d 2624 . . . . . . 7 (𝑢 = 𝑈 → ((𝑥𝐻𝑢) = 𝑥 ↔ (𝑥𝐻𝑈) = 𝑥))
3330, 32anbi12d 747 . . . . . 6 (𝑢 = 𝑈 → (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
3433ralbidv 2986 . . . . 5 (𝑢 = 𝑈 → (∀𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
3534riota2 6633 . . . 4 ((𝑈 ∈ ran 𝐻 ∧ ∃!𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3624, 28, 35syl2anc 693 . . 3 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (∀𝑥 ∈ ran 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥) ↔ (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈))
3721, 36mpbid 222 . 2 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (𝑢 ∈ ran 𝐻𝑥 ∈ ran 𝐻((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) = 𝑈)
388, 37eqtrd 2656 1 (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  ∃!wreu 2914  Vcvv 3200  cin 3573  wss 3574   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116  cfv 5888  crio 6610  (class class class)co 6650  GIdcgi 27344   ExId cexid 33643  Magmacmagm 33647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-gid 27348  df-exid 33644  df-mgmOLD 33648
This theorem is referenced by:  isdrngo2  33757
  Copyright terms: Public domain W3C validator