![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fun | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fun | ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6102 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 5988 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 5882 Fn wfn 5883 –1-1→wf1 5885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-fn 5891 df-f 5892 df-f1 5893 |
This theorem is referenced by: f1cocnv2 6164 f1o2ndf1 7285 fnwelem 7292 f1dmvrnfibi 8250 fsuppco 8307 ackbij1b 9061 fin23lem31 9165 fin1a2lem6 9227 hashimarn 13227 gsumval3lem1 18306 gsumval3lem2 18307 usgrfun 26053 trlsegvdeglem6 27085 elhf 32281 |
Copyright terms: Public domain | W3C validator |