Proof of Theorem gsumval3lem1
| Step | Hyp | Ref
| Expression |
| 1 | | gsumval3.h |
. . . . . . 7
⊢ (𝜑 → 𝐻:(1...𝑀)–1-1→𝐴) |
| 2 | 1 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1→𝐴) |
| 3 | | gsumval3.w |
. . . . . . . . 9
⊢ 𝑊 = ((𝐹 ∘ 𝐻) supp 0 ) |
| 4 | | suppssdm 7308 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝐻) supp 0 ) ⊆ dom (𝐹 ∘ 𝐻) |
| 5 | 3, 4 | eqsstri 3635 |
. . . . . . . 8
⊢ 𝑊 ⊆ dom (𝐹 ∘ 𝐻) |
| 6 | | gsumval3.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 7 | | f1f 6101 |
. . . . . . . . . . 11
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → 𝐻:(1...𝑀)⟶𝐴) |
| 8 | 1, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻:(1...𝑀)⟶𝐴) |
| 9 | | fco 6058 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐻:(1...𝑀)⟶𝐴) → (𝐹 ∘ 𝐻):(1...𝑀)⟶𝐵) |
| 10 | 6, 8, 9 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∘ 𝐻):(1...𝑀)⟶𝐵) |
| 11 | | fdm 6051 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝐻):(1...𝑀)⟶𝐵 → dom (𝐹 ∘ 𝐻) = (1...𝑀)) |
| 12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom (𝐹 ∘ 𝐻) = (1...𝑀)) |
| 13 | 5, 12 | syl5sseq 3653 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ⊆ (1...𝑀)) |
| 14 | 13 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀)) |
| 15 | | f1ores 6151 |
. . . . . 6
⊢ ((𝐻:(1...𝑀)–1-1→𝐴 ∧ 𝑊 ⊆ (1...𝑀)) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊)) |
| 16 | 2, 14, 15 | syl2anc 693 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊)) |
| 17 | 3 | imaeq2i 5464 |
. . . . . . 7
⊢ (𝐻 “ 𝑊) = (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) |
| 18 | | gsumval3.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 19 | | fex 6490 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
| 20 | 6, 18, 19 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ V) |
| 21 | | ovex 6678 |
. . . . . . . . . . . 12
⊢
(1...𝑀) ∈
V |
| 22 | | fex 6490 |
. . . . . . . . . . . 12
⊢ ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V) |
| 23 | 7, 21, 22 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → 𝐻 ∈ V) |
| 24 | 1, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ V) |
| 25 | | f1fun 6103 |
. . . . . . . . . . . 12
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → Fun 𝐻) |
| 26 | 1, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐻) |
| 27 | | gsumval3.n |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻) |
| 28 | 26, 27 | jca 554 |
. . . . . . . . . 10
⊢ (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) |
| 29 | 20, 24, 28 | jca31 557 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))) |
| 30 | 29 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))) |
| 31 | | imacosupp 7335 |
. . . . . . . . 9
⊢ ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 ))) |
| 32 | 31 | imp 445 |
. . . . . . . 8
⊢ (((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 )) |
| 33 | 30, 32 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 )) |
| 34 | 17, 33 | syl5eq 2668 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 “ 𝑊) = (𝐹 supp 0 )) |
| 35 | | f1oeq3 6129 |
. . . . . 6
⊢ ((𝐻 “ 𝑊) = (𝐹 supp 0 ) → ((𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊) ↔ (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 ))) |
| 36 | 34, 35 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → ((𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊) ↔ (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 ))) |
| 37 | 16, 36 | mpbid 222 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 )) |
| 38 | | isof1o 6573 |
. . . . 5
⊢ (𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊) → 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊) |
| 39 | 38 | ad2antll 765 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊) |
| 40 | | f1oco 6159 |
. . . 4
⊢ (((𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 ) ∧ 𝑓:(1...(#‘𝑊))–1-1-onto→𝑊) → ((𝐻 ↾ 𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 )) |
| 41 | 37, 39, 40 | syl2anc 693 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → ((𝐻 ↾ 𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 )) |
| 42 | | f1of 6137 |
. . . . 5
⊢ (𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 → 𝑓:(1...(#‘𝑊))⟶𝑊) |
| 43 | | frn 6053 |
. . . . 5
⊢ (𝑓:(1...(#‘𝑊))⟶𝑊 → ran 𝑓 ⊆ 𝑊) |
| 44 | 39, 42, 43 | 3syl 18 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → ran 𝑓 ⊆ 𝑊) |
| 45 | | cores 5638 |
. . . 4
⊢ (ran
𝑓 ⊆ 𝑊 → ((𝐻 ↾ 𝑊) ∘ 𝑓) = (𝐻 ∘ 𝑓)) |
| 46 | | f1oeq1 6127 |
. . . 4
⊢ (((𝐻 ↾ 𝑊) ∘ 𝑓) = (𝐻 ∘ 𝑓) → (((𝐻 ↾ 𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻 ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ))) |
| 47 | 44, 45, 46 | 3syl 18 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (((𝐻 ↾ 𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻 ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ))) |
| 48 | 41, 47 | mpbid 222 |
. 2
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 )) |
| 49 | | fzfi 12771 |
. . . . . . . . . 10
⊢
(1...𝑀) ∈
Fin |
| 50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 51 | | fex2 7121 |
. . . . . . . . 9
⊢ ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin ∧ 𝐴 ∈ 𝑉) → 𝐻 ∈ V) |
| 52 | 8, 50, 18, 51 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ V) |
| 53 | | resexg 5442 |
. . . . . . . 8
⊢ (𝐻 ∈ V → (𝐻 ↾ 𝑊) ∈ V) |
| 54 | 52, 53 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐻 ↾ 𝑊) ∈ V) |
| 55 | 54 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 ↾ 𝑊) ∈ V) |
| 56 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → 𝑊 = ((𝐹 ∘ 𝐻) supp 0 )) |
| 57 | 56 | imaeq2d 5466 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 “ 𝑊) = (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 ))) |
| 58 | 20, 52, 28 | jca31 557 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))) |
| 59 | 58 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))) |
| 60 | 59, 32 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹 ∘ 𝐻) supp 0 )) = (𝐹 supp 0 )) |
| 61 | 57, 60 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 “ 𝑊) = (𝐹 supp 0 )) |
| 62 | 61, 35 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → ((𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐻 “ 𝑊) ↔ (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 ))) |
| 63 | 16, 62 | mpbid 222 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 )) |
| 64 | | f1oen3g 7971 |
. . . . . 6
⊢ (((𝐻 ↾ 𝑊) ∈ V ∧ (𝐻 ↾ 𝑊):𝑊–1-1-onto→(𝐹 supp 0 )) → 𝑊 ≈ (𝐹 supp 0 )) |
| 65 | 55, 63, 64 | syl2anc 693 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → 𝑊 ≈ (𝐹 supp 0 )) |
| 66 | | ssfi 8180 |
. . . . . . . 8
⊢
(((1...𝑀) ∈ Fin
∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin) |
| 67 | 49, 13, 66 | sylancr 695 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 68 | 67 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → 𝑊 ∈ Fin) |
| 69 | | f1f1orn 6148 |
. . . . . . . . . . . 12
⊢ (𝐻:(1...𝑀)–1-1→𝐴 → 𝐻:(1...𝑀)–1-1-onto→ran
𝐻) |
| 70 | 1, 69 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻:(1...𝑀)–1-1-onto→ran
𝐻) |
| 71 | | f1oen3g 7971 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran
𝐻) → (1...𝑀) ≈ ran 𝐻) |
| 72 | 52, 70, 71 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑀) ≈ ran 𝐻) |
| 73 | | enfi 8176 |
. . . . . . . . . 10
⊢
((1...𝑀) ≈ ran
𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin)) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin)) |
| 75 | 49, 74 | mpbii 223 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐻 ∈ Fin) |
| 76 | | ssfi 8180 |
. . . . . . . 8
⊢ ((ran
𝐻 ∈ Fin ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐹 supp 0 ) ∈
Fin) |
| 77 | 75, 27, 76 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) |
| 78 | 77 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈
Fin) |
| 79 | | hashen 13135 |
. . . . . 6
⊢ ((𝑊 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) →
((#‘𝑊) =
(#‘(𝐹 supp 0 )) ↔
𝑊 ≈ (𝐹 supp 0 ))) |
| 80 | 68, 78, 79 | syl2anc 693 |
. . . . 5
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 ))) |
| 81 | 65, 80 | mpbird 247 |
. . . 4
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (#‘𝑊) = (#‘(𝐹 supp 0 ))) |
| 82 | 81 | oveq2d 6666 |
. . 3
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (1...(#‘𝑊)) = (1...(#‘(𝐹 supp 0 )))) |
| 83 | | f1oeq2 6128 |
. . 3
⊢
((1...(#‘𝑊)) =
(1...(#‘(𝐹 supp 0 ))) →
((𝐻 ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻 ∘ 𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) |
| 84 | 82, 83 | syl 17 |
. 2
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → ((𝐻 ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻 ∘ 𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) |
| 85 | 48, 84 | mpbid 222 |
1
⊢ (((𝜑 ∧ 𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , <
((1...(#‘𝑊)), 𝑊))) → (𝐻 ∘ 𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) |