MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem1 Structured version   Visualization version   GIF version

Theorem gsumval3lem1 18306
Description: Lemma 1 for gsumval3 18308. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem1
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
21ad2antrr 762 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
3 gsumval3.w . . . . . . . . 9 𝑊 = ((𝐹𝐻) supp 0 )
4 suppssdm 7308 . . . . . . . . 9 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
53, 4eqsstri 3635 . . . . . . . 8 𝑊 ⊆ dom (𝐹𝐻)
6 gsumval3.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
7 f1f 6101 . . . . . . . . . . 11 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
81, 7syl 17 . . . . . . . . . 10 (𝜑𝐻:(1...𝑀)⟶𝐴)
9 fco 6058 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
106, 8, 9syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
11 fdm 6051 . . . . . . . . 9 ((𝐹𝐻):(1...𝑀)⟶𝐵 → dom (𝐹𝐻) = (1...𝑀))
1210, 11syl 17 . . . . . . . 8 (𝜑 → dom (𝐹𝐻) = (1...𝑀))
135, 12syl5sseq 3653 . . . . . . 7 (𝜑𝑊 ⊆ (1...𝑀))
1413ad2antrr 762 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
15 f1ores 6151 . . . . . 6 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
162, 14, 15syl2anc 693 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
173imaeq2i 5464 . . . . . . 7 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
18 gsumval3.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
19 fex 6490 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
206, 18, 19syl2anc 693 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
21 ovex 6678 . . . . . . . . . . . 12 (1...𝑀) ∈ V
22 fex 6490 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
237, 21, 22sylancl 694 . . . . . . . . . . 11 (𝐻:(1...𝑀)–1-1𝐴𝐻 ∈ V)
241, 23syl 17 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
25 f1fun 6103 . . . . . . . . . . . 12 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
261, 25syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐻)
27 gsumval3.n . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
2826, 27jca 554 . . . . . . . . . 10 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
2920, 24, 28jca31 557 . . . . . . . . 9 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
3029ad2antrr 762 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
31 imacosupp 7335 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
3231imp 445 . . . . . . . 8 (((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3330, 32syl 17 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
3417, 33syl5eq 2668 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
35 f1oeq3 6129 . . . . . 6 ((𝐻𝑊) = (𝐹 supp 0 ) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
3634, 35syl 17 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
3716, 36mpbid 222 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
38 isof1o 6573 . . . . 5 (𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊) → 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
3938ad2antll 765 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑓:(1...(#‘𝑊))–1-1-onto𝑊)
40 f1oco 6159 . . . 4 (((𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ) ∧ 𝑓:(1...(#‘𝑊))–1-1-onto𝑊) → ((𝐻𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ))
4137, 39, 40syl2anc 693 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ))
42 f1of 6137 . . . . 5 (𝑓:(1...(#‘𝑊))–1-1-onto𝑊𝑓:(1...(#‘𝑊))⟶𝑊)
43 frn 6053 . . . . 5 (𝑓:(1...(#‘𝑊))⟶𝑊 → ran 𝑓𝑊)
4439, 42, 433syl 18 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ran 𝑓𝑊)
45 cores 5638 . . . 4 (ran 𝑓𝑊 → ((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓))
46 f1oeq1 6127 . . . 4 (((𝐻𝑊) ∘ 𝑓) = (𝐻𝑓) → (((𝐻𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4744, 45, 463syl 18 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (((𝐻𝑊) ∘ 𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 )))
4841, 47mpbid 222 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ))
49 fzfi 12771 . . . . . . . . . 10 (1...𝑀) ∈ Fin
5049a1i 11 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
51 fex2 7121 . . . . . . . . 9 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin ∧ 𝐴𝑉) → 𝐻 ∈ V)
528, 50, 18, 51syl3anc 1326 . . . . . . . 8 (𝜑𝐻 ∈ V)
53 resexg 5442 . . . . . . . 8 (𝐻 ∈ V → (𝐻𝑊) ∈ V)
5452, 53syl 17 . . . . . . 7 (𝜑 → (𝐻𝑊) ∈ V)
5554ad2antrr 762 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) ∈ V)
563a1i 11 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 = ((𝐹𝐻) supp 0 ))
5756imaeq2d 5466 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 )))
5820, 52, 28jca31 557 . . . . . . . . . . 11 (𝜑 → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
5958ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐹 ∈ V ∧ 𝐻 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻)))
6059, 32syl 17 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
6157, 60eqtrd 2656 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
6261, 35syl 17 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
6316, 62mpbid 222 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
64 f1oen3g 7971 . . . . . 6 (((𝐻𝑊) ∈ V ∧ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )) → 𝑊 ≈ (𝐹 supp 0 ))
6555, 63, 64syl2anc 693 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ≈ (𝐹 supp 0 ))
66 ssfi 8180 . . . . . . . 8 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
6749, 13, 66sylancr 695 . . . . . . 7 (𝜑𝑊 ∈ Fin)
6867ad2antrr 762 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
69 f1f1orn 6148 . . . . . . . . . . . 12 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
701, 69syl 17 . . . . . . . . . . 11 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
71 f1oen3g 7971 . . . . . . . . . . 11 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
7252, 70, 71syl2anc 693 . . . . . . . . . 10 (𝜑 → (1...𝑀) ≈ ran 𝐻)
73 enfi 8176 . . . . . . . . . 10 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
7472, 73syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
7549, 74mpbii 223 . . . . . . . 8 (𝜑 → ran 𝐻 ∈ Fin)
76 ssfi 8180 . . . . . . . 8 ((ran 𝐻 ∈ Fin ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐹 supp 0 ) ∈ Fin)
7775, 27, 76syl2anc 693 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
7877ad2antrr 762 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈ Fin)
79 hashen 13135 . . . . . 6 ((𝑊 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 )))
8068, 78, 79syl2anc 693 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 )))
8165, 80mpbird 247 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (#‘𝑊) = (#‘(𝐹 supp 0 )))
8281oveq2d 6666 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (1...(#‘𝑊)) = (1...(#‘(𝐹 supp 0 ))))
83 f1oeq2 6128 . . 3 ((1...(#‘𝑊)) = (1...(#‘(𝐹 supp 0 ))) → ((𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
8482, 83syl 17 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(#‘𝑊))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
8548, 84mpbid 222 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  Fun wfun 5882  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650   supp csupp 7295  cen 7952  Fincfn 7955  1c1 9937   < clt 10074  cn 11020  ...cfz 12326  #chash 13117  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  gsumval3lem2  18307
  Copyright terms: Public domain W3C validator