MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppco Structured version   Visualization version   GIF version

Theorem fsuppco 8307
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
fsuppco.f (𝜑𝐹 finSupp 𝑍)
fsuppco.g (𝜑𝐺:𝑋1-1𝑌)
fsuppco.z (𝜑𝑍𝑊)
fsuppco.v (𝜑𝐹𝑉)
Assertion
Ref Expression
fsuppco (𝜑 → (𝐹𝐺) finSupp 𝑍)

Proof of Theorem fsuppco
StepHypRef Expression
1 fsuppco.v . . . . 5 (𝜑𝐹𝑉)
2 fsuppco.g . . . . . 6 (𝜑𝐺:𝑋1-1𝑌)
3 df-f1 5893 . . . . . . 7 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
43simprbi 480 . . . . . 6 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
52, 4syl 17 . . . . 5 (𝜑 → Fun 𝐺)
6 cofunex2g 7131 . . . . 5 ((𝐹𝑉 ∧ Fun 𝐺) → (𝐹𝐺) ∈ V)
71, 5, 6syl2anc 693 . . . 4 (𝜑 → (𝐹𝐺) ∈ V)
8 fsuppco.z . . . 4 (𝜑𝑍𝑊)
9 suppimacnv 7306 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 693 . . 3 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 7306 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
121, 8, 11syl2anc 693 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 fsuppco.f . . . . . 6 (𝜑𝐹 finSupp 𝑍)
1413fsuppimpd 8282 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1512, 14eqeltrrd 2702 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
1615, 2fsuppcolem 8306 . . 3 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
1710, 16eqeltrd 2701 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
18 fsuppimp 8281 . . . . . 6 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
1918simpld 475 . . . . 5 (𝐹 finSupp 𝑍 → Fun 𝐹)
2013, 19syl 17 . . . 4 (𝜑 → Fun 𝐹)
21 f1fun 6103 . . . . 5 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
222, 21syl 17 . . . 4 (𝜑 → Fun 𝐺)
23 funco 5928 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
2420, 22, 23syl2anc 693 . . 3 (𝜑 → Fun (𝐹𝐺))
25 funisfsupp 8280 . . 3 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2624, 7, 8, 25syl3anc 1326 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2717, 26mpbird 247 1 (𝜑 → (𝐹𝐺) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  {csn 4177   class class class wbr 4653  ccnv 5113  cima 5117  ccom 5118  Fun wfun 5882  wf 5884  1-1wf1 5885  (class class class)co 6650   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fsupp 8276
This theorem is referenced by:  mapfienlem1  8310  mapfienlem2  8311  coe1sfi  19583
  Copyright terms: Public domain W3C validator