| Step | Hyp | Ref
| Expression |
| 1 | | f1f 6101 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| 2 | | fo2ndf 7284 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) |
| 4 | | f2ndf 7283 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
| 5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
| 6 | | fssxp 6060 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 7 | 1, 6 | syl 17 |
. . . . . 6
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 8 | | ssel2 3598 |
. . . . . . . . . . 11
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ (𝐴 × 𝐵)) |
| 9 | | elxp2 5132 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉) |
| 10 | 8, 9 | sylib 208 |
. . . . . . . . . 10
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑥 ∈ 𝐹) → ∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉) |
| 11 | | ssel2 3598 |
. . . . . . . . . . 11
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ (𝐴 × 𝐵)) |
| 12 | | elxp2 5132 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐴 × 𝐵) ↔ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) |
| 13 | 11, 12 | sylib 208 |
. . . . . . . . . 10
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑦 ∈ 𝐹) → ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) |
| 14 | 10, 13 | anim12dan 882 |
. . . . . . . . 9
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (∃𝑎 ∈ 𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 ∧ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉)) |
| 15 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(〈𝑎, 𝑣〉 ∈ 𝐹 → ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑎, 𝑣〉)) |
| 16 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑎, 𝑣〉)) |
| 17 | 16 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑎, 𝑣〉)) |
| 18 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈𝑏, 𝑤〉 ∈ 𝐹 → ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) = (2nd ‘〈𝑏, 𝑤〉)) |
| 19 | 18 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) = (2nd ‘〈𝑏, 𝑤〉)) |
| 20 | 17, 19 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) ↔ (2nd
‘〈𝑎, 𝑣〉) = (2nd
‘〈𝑏, 𝑤〉))) |
| 21 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑎 ∈ V |
| 22 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑣 ∈ V |
| 23 | 21, 22 | op2nd 7177 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(2nd ‘〈𝑎, 𝑣〉) = 𝑣 |
| 24 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑏 ∈ V |
| 25 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑤 ∈ V |
| 26 | 24, 25 | op2nd 7177 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(2nd ‘〈𝑏, 𝑤〉) = 𝑤 |
| 27 | 23, 26 | eqeq12i 2636 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((2nd ‘〈𝑎, 𝑣〉) = (2nd ‘〈𝑏, 𝑤〉) ↔ 𝑣 = 𝑤) |
| 28 | | f1fun 6103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹:𝐴–1-1→𝐵 → Fun 𝐹) |
| 29 | | funopfv 6235 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (Fun
𝐹 → (〈𝑎, 𝑣〉 ∈ 𝐹 → (𝐹‘𝑎) = 𝑣)) |
| 30 | | funopfv 6235 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (Fun
𝐹 → (〈𝑏, 𝑤〉 ∈ 𝐹 → (𝐹‘𝑏) = 𝑤)) |
| 31 | 29, 30 | anim12d 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Fun
𝐹 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → ((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤))) |
| 32 | 28, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝐴–1-1→𝐵 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → ((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤))) |
| 33 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐹‘𝑎) = 𝑣 ↔ 𝑣 = (𝐹‘𝑎)) |
| 34 | 33 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹‘𝑎) = 𝑣 → 𝑣 = (𝐹‘𝑎)) |
| 35 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐹‘𝑏) = 𝑤 ↔ 𝑤 = (𝐹‘𝑏)) |
| 36 | 35 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹‘𝑏) = 𝑤 → 𝑤 = (𝐹‘𝑏)) |
| 37 | 34, 36 | eqeqan12d 2638 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
| 38 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) → 𝑎 ∈ 𝐴) |
| 39 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) → 𝑏 ∈ 𝐴) |
| 40 | 38, 39 | anim12i 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) |
| 41 | | f1veqaeq 6514 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
| 42 | 40, 41 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
| 43 | | opeq12 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 = 𝑏 ∧ 𝑣 = 𝑤) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉) |
| 44 | 43 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = 𝑏 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)) |
| 45 | 42, 44 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
| 46 | 45 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝑣 = 𝑤 → ((𝐹‘𝑎) = (𝐹‘𝑏) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
| 47 | 46 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → ((𝐹‘𝑎) = (𝐹‘𝑏) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 48 | 47 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐹‘𝑎) = (𝐹‘𝑏) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 49 | 37, 48 | syl6bi 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))))) |
| 50 | 49 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑣 = 𝑤 → (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))))) |
| 51 | 50 | pm2.43i 52 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 = 𝑤 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 52 | 51 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 53 | 52 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝐴–1-1→𝐵 → (((𝐹‘𝑎) = 𝑣 ∧ (𝐹‘𝑏) = 𝑤) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 54 | 32, 53 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:𝐴–1-1→𝐵 → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 55 | 54 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (𝐹:𝐴–1-1→𝐵 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 56 | 55 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝐹:𝐴–1-1→𝐵 → (𝑣 = 𝑤 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
| 57 | 56 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝑣 = 𝑤 → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
| 58 | 27, 57 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → ((2nd
‘〈𝑎, 𝑣〉) = (2nd
‘〈𝑏, 𝑤〉) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
| 59 | 20, 58 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → (𝐹:𝐴–1-1→𝐵 → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
| 60 | 59 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵))) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
| 61 | 60 | ex 450 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 62 | 61 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 63 | 62 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 64 | 63 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 65 | 64 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 66 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈𝑎, 𝑣〉 → (𝑥 ∈ 𝐹 ↔ 〈𝑎, 𝑣〉 ∈ 𝐹)) |
| 67 | 66 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑥 ∈ 𝐹 ↔ 〈𝑎, 𝑣〉 ∈ 𝐹)) |
| 68 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑏, 𝑤〉 → (𝑦 ∈ 𝐹 ↔ 〈𝑏, 𝑤〉 ∈ 𝐹)) |
| 69 | 67, 68 | bi2anan9 917 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) ↔ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹))) |
| 70 | 69 | anbi2d 740 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ (〈𝑎, 𝑣〉 ∈ 𝐹 ∧ 〈𝑏, 𝑤〉 ∈ 𝐹)))) |
| 71 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈𝑎, 𝑣〉 → ((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉)) |
| 72 | 71 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → ((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉)) |
| 73 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈𝑏, 𝑤〉 → ((2nd ↾ 𝐹)‘𝑦) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉)) |
| 74 | 72, 73 | eqeqan12d 2638 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → (((2nd ↾
𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) ↔ ((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉))) |
| 75 | | simpllr 799 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → 𝑥 = 〈𝑎, 𝑣〉) |
| 76 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → 𝑦 = 〈𝑏, 𝑤〉) |
| 77 | 75, 76 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → (𝑥 = 𝑦 ↔ 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)) |
| 78 | 74, 77 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((((2nd ↾
𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉))) |
| 79 | 78 | imbi2d 330 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘〈𝑎, 𝑣〉) = ((2nd ↾ 𝐹)‘〈𝑏, 𝑤〉) → 〈𝑎, 𝑣〉 = 〈𝑏, 𝑤〉)))) |
| 80 | 65, 70, 79 | 3imtr4d 283 |
. . . . . . . . . . . . . 14
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
| 81 | 80 | ex 450 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
| 82 | 81 | rexlimdvva 3038 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑥 = 〈𝑎, 𝑣〉) → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
| 83 | 82 | ex 450 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) → (𝑥 = 〈𝑎, 𝑣〉 → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))))) |
| 84 | 83 | rexlimivv 3036 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 → (∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉 → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))))) |
| 85 | 84 | imp 445 |
. . . . . . . . 9
⊢
((∃𝑎 ∈
𝐴 ∃𝑣 ∈ 𝐵 𝑥 = 〈𝑎, 𝑣〉 ∧ ∃𝑏 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑦 = 〈𝑏, 𝑤〉) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
| 86 | 14, 85 | mpcom 38 |
. . . . . . . 8
⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
| 87 | 86 | ex 450 |
. . . . . . 7
⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝐹:𝐴–1-1→𝐵 → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
| 88 | 87 | com23 86 |
. . . . . 6
⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝐹:𝐴–1-1→𝐵 → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)))) |
| 89 | 7, 88 | mpcom 38 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
| 90 | 89 | ralrimivv 2970 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦)) |
| 91 | | dff13 6512 |
. . . 4
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 ↔ ((2nd ↾ 𝐹):𝐹⟶𝐵 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (((2nd ↾ 𝐹)‘𝑥) = ((2nd ↾ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
| 92 | 5, 90, 91 | sylanbrc 698 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1→𝐵) |
| 93 | | df-f1 5893 |
. . . 4
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 ↔ ((2nd ↾ 𝐹):𝐹⟶𝐵 ∧ Fun ◡(2nd ↾ 𝐹))) |
| 94 | 93 | simprbi 480 |
. . 3
⊢
((2nd ↾ 𝐹):𝐹–1-1→𝐵 → Fun ◡(2nd ↾ 𝐹)) |
| 95 | 92, 94 | syl 17 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡(2nd ↾ 𝐹)) |
| 96 | | dff1o3 6143 |
. 2
⊢
((2nd ↾ 𝐹):𝐹–1-1-onto→ran
𝐹 ↔ ((2nd
↾ 𝐹):𝐹–onto→ran 𝐹 ∧ Fun ◡(2nd ↾ 𝐹))) |
| 97 | 3, 95, 96 | sylanbrc 698 |
1
⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran
𝐹) |