MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1fun Structured version   Visualization version   Unicode version

Theorem f1fun 6103
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun  |-  ( F : A -1-1-> B  ->  Fun  F )

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 6102 . 2  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 fnfun 5988 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 17 1  |-  ( F : A -1-1-> B  ->  Fun  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   Fun wfun 5882    Fn wfn 5883   -1-1->wf1 5885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-fn 5891  df-f 5892  df-f1 5893
This theorem is referenced by:  f1cocnv2  6164  f1o2ndf1  7285  fnwelem  7292  f1dmvrnfibi  8250  fsuppco  8307  ackbij1b  9061  fin23lem31  9165  fin1a2lem6  9227  hashimarn  13227  gsumval3lem1  18306  gsumval3lem2  18307  usgrfun  26053  trlsegvdeglem6  27085  elhf  32281
  Copyright terms: Public domain W3C validator