MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3lem2 Structured version   Visualization version   GIF version

Theorem gsumval3lem2 18307
Description: Lemma 2 for gsumval3 18308. (Contributed by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3lem2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)))
Distinct variable groups:   + ,𝑓   𝐴,𝑓   𝜑,𝑓   𝑓,𝐺   𝑓,𝑀   𝐵,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝑊
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑓)

Proof of Theorem gsumval3lem2
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.h . . . . . . 7 (𝜑𝐻:(1...𝑀)–1-1𝐴)
2 f1f 6101 . . . . . . 7 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
31, 2syl 17 . . . . . 6 (𝜑𝐻:(1...𝑀)⟶𝐴)
4 fzfid 12772 . . . . . 6 (𝜑 → (1...𝑀) ∈ Fin)
5 gsumval3.a . . . . . 6 (𝜑𝐴𝑉)
6 fex2 7121 . . . . . 6 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin ∧ 𝐴𝑉) → 𝐻 ∈ V)
73, 4, 5, 6syl3anc 1326 . . . . 5 (𝜑𝐻 ∈ V)
8 vex 3203 . . . . 5 𝑓 ∈ V
9 coexg 7117 . . . . 5 ((𝐻 ∈ V ∧ 𝑓 ∈ V) → (𝐻𝑓) ∈ V)
107, 8, 9sylancl 694 . . . 4 (𝜑 → (𝐻𝑓) ∈ V)
1110ad2antrr 762 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓) ∈ V)
12 gsumval3.b . . . . 5 𝐵 = (Base‘𝐺)
13 gsumval3.0 . . . . 5 0 = (0g𝐺)
14 gsumval3.p . . . . 5 + = (+g𝐺)
15 gsumval3.z . . . . 5 𝑍 = (Cntz‘𝐺)
16 gsumval3.g . . . . 5 (𝜑𝐺 ∈ Mnd)
17 gsumval3.f . . . . 5 (𝜑𝐹:𝐴𝐵)
18 gsumval3.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
19 gsumval3.m . . . . 5 (𝜑𝑀 ∈ ℕ)
20 gsumval3.n . . . . 5 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
21 gsumval3.w . . . . 5 𝑊 = ((𝐹𝐻) supp 0 )
2212, 13, 14, 15, 16, 5, 17, 18, 19, 1, 20, 21gsumval3lem1 18306 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))
23 resexg 5442 . . . . . . . . 9 (𝐻 ∈ V → (𝐻𝑊) ∈ V)
247, 23syl 17 . . . . . . . 8 (𝜑 → (𝐻𝑊) ∈ V)
2524ad2antrr 762 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) ∈ V)
261ad2antrr 762 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐻:(1...𝑀)–1-1𝐴)
27 suppssdm 7308 . . . . . . . . . . . 12 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
2821, 27eqsstri 3635 . . . . . . . . . . 11 𝑊 ⊆ dom (𝐹𝐻)
29 fco 6058 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
3017, 3, 29syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
31 fdm 6051 . . . . . . . . . . . 12 ((𝐹𝐻):(1...𝑀)⟶𝐵 → dom (𝐹𝐻) = (1...𝑀))
3230, 31syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝐹𝐻) = (1...𝑀))
3328, 32syl5sseq 3653 . . . . . . . . . 10 (𝜑𝑊 ⊆ (1...𝑀))
3433ad2antrr 762 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
35 f1ores 6151 . . . . . . . . 9 ((𝐻:(1...𝑀)–1-1𝐴𝑊 ⊆ (1...𝑀)) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3626, 34, 35syl2anc 693 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐻𝑊))
3721imaeq2i 5464 . . . . . . . . . . 11 (𝐻𝑊) = (𝐻 “ ((𝐹𝐻) supp 0 ))
38 fex 6490 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
3917, 5, 38syl2anc 693 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
40 ovex 6678 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ V
41 fex 6490 . . . . . . . . . . . . . . 15 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐻 ∈ V)
423, 40, 41sylancl 694 . . . . . . . . . . . . . 14 (𝜑𝐻 ∈ V)
4339, 42jca 554 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ V ∧ 𝐻 ∈ V))
44 f1fun 6103 . . . . . . . . . . . . . . 15 (𝐻:(1...𝑀)–1-1𝐴 → Fun 𝐻)
451, 44syl 17 . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐻)
4645, 20jca 554 . . . . . . . . . . . . 13 (𝜑 → (Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻))
47 imacosupp 7335 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((Fun 𝐻 ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 )))
4843, 46, 47sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
4948adantr 481 . . . . . . . . . . 11 ((𝜑𝑊 ≠ ∅) → (𝐻 “ ((𝐹𝐻) supp 0 )) = (𝐹 supp 0 ))
5037, 49syl5eq 2668 . . . . . . . . . 10 ((𝜑𝑊 ≠ ∅) → (𝐻𝑊) = (𝐹 supp 0 ))
5150adantr 481 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊) = (𝐹 supp 0 ))
52 f1oeq3 6129 . . . . . . . . 9 ((𝐻𝑊) = (𝐹 supp 0 ) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
5351, 52syl 17 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑊):𝑊1-1-onto→(𝐻𝑊) ↔ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )))
5436, 53mpbid 222 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 ))
55 f1oen3g 7971 . . . . . . 7 (((𝐻𝑊) ∈ V ∧ (𝐻𝑊):𝑊1-1-onto→(𝐹 supp 0 )) → 𝑊 ≈ (𝐹 supp 0 ))
5625, 54, 55syl2anc 693 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ≈ (𝐹 supp 0 ))
57 fzfi 12771 . . . . . . . . 9 (1...𝑀) ∈ Fin
58 ssfi 8180 . . . . . . . . 9 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
5957, 33, 58sylancr 695 . . . . . . . 8 (𝜑𝑊 ∈ Fin)
6059ad2antrr 762 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝑊 ∈ Fin)
61 f1f1orn 6148 . . . . . . . . . . . . 13 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
621, 61syl 17 . . . . . . . . . . . 12 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
63 f1oen3g 7971 . . . . . . . . . . . 12 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
647, 62, 63syl2anc 693 . . . . . . . . . . 11 (𝜑 → (1...𝑀) ≈ ran 𝐻)
65 enfi 8176 . . . . . . . . . . 11 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
6664, 65syl 17 . . . . . . . . . 10 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
6757, 66mpbii 223 . . . . . . . . 9 (𝜑 → ran 𝐻 ∈ Fin)
68 ssfi 8180 . . . . . . . . 9 ((ran 𝐻 ∈ Fin ∧ (𝐹 supp 0 ) ⊆ ran 𝐻) → (𝐹 supp 0 ) ∈ Fin)
6967, 20, 68syl2anc 693 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
7069ad2antrr 762 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ∈ Fin)
71 hashen 13135 . . . . . . 7 ((𝑊 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 )))
7260, 70, 71syl2anc 693 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((#‘𝑊) = (#‘(𝐹 supp 0 )) ↔ 𝑊 ≈ (𝐹 supp 0 )))
7356, 72mpbird 247 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (#‘𝑊) = (#‘(𝐹 supp 0 )))
7473fveq2d 6195 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 ))))
7522, 74jca 554 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 )))))
76 f1oeq1 6127 . . . . 5 (𝑔 = (𝐻𝑓) → (𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ↔ (𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))
77 coeq2 5280 . . . . . . . 8 (𝑔 = (𝐻𝑓) → (𝐹𝑔) = (𝐹 ∘ (𝐻𝑓)))
7877seqeq3d 12809 . . . . . . 7 (𝑔 = (𝐻𝑓) → seq1( + , (𝐹𝑔)) = seq1( + , (𝐹 ∘ (𝐻𝑓))))
7978fveq1d 6193 . . . . . 6 (𝑔 = (𝐻𝑓) → (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 ))))
8079eqeq2d 2632 . . . . 5 (𝑔 = (𝐻𝑓) → ((seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 )))))
8176, 80anbi12d 747 . . . 4 (𝑔 = (𝐻𝑓) → ((𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ ((𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 ))))))
8281spcegv 3294 . . 3 ((𝐻𝑓) ∈ V → (((𝐻𝑓):(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘(𝐹 supp 0 )))) → ∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))))
8311, 75, 82sylc 65 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))))
8416ad2antrr 762 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐺 ∈ Mnd)
855ad2antrr 762 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐴𝑉)
8617ad2antrr 762 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → 𝐹:𝐴𝐵)
8718ad2antrr 762 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8821neeq1i 2858 . . . . . . . . . 10 (𝑊 ≠ ∅ ↔ ((𝐹𝐻) supp 0 ) ≠ ∅)
89 supp0cosupp0 7334 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 supp 0 ) = ∅ → ((𝐹𝐻) supp 0 ) = ∅))
9089necon3d 2815 . . . . . . . . . . 11 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
9139, 42, 90syl2anc 693 . . . . . . . . . 10 (𝜑 → (((𝐹𝐻) supp 0 ) ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
9288, 91syl5bi 232 . . . . . . . . 9 (𝜑 → (𝑊 ≠ ∅ → (𝐹 supp 0 ) ≠ ∅))
9392imp 445 . . . . . . . 8 ((𝜑𝑊 ≠ ∅) → (𝐹 supp 0 ) ≠ ∅)
9493adantr 481 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ≠ ∅)
9520ad2antrr 762 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ ran 𝐻)
96 frn 6053 . . . . . . . . . 10 (𝐻:(1...𝑀)⟶𝐴 → ran 𝐻𝐴)
973, 96syl 17 . . . . . . . . 9 (𝜑 → ran 𝐻𝐴)
9897ad2antrr 762 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ran 𝐻𝐴)
9995, 98sstrd 3613 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐹 supp 0 ) ⊆ 𝐴)
10012, 13, 14, 15, 84, 85, 86, 87, 70, 94, 99gsumval3eu 18305 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ∃!𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))))
101 iota1 5865 . . . . . 6 (∃!𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))) = 𝑥))
102100, 101syl 17 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (℩𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))) = 𝑥))
103 eqid 2622 . . . . . . 7 (𝐹 supp 0 ) = (𝐹 supp 0 )
104 simprl 794 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ¬ 𝐴 ∈ ran ...)
10512, 13, 14, 15, 84, 85, 86, 87, 70, 94, 103, 104gsumval3a 18304 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (℩𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))))
106105eqeq1d 2624 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (℩𝑥𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))) = 𝑥))
107102, 106bitr4d 271 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
108107alrimiv 1855 . . 3 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → ∀𝑥(∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥))
109 fvex 6201 . . . 4 (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) ∈ V
110 eqeq1 2626 . . . . . . 7 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → (𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))) ↔ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))))
111110anbi2d 740 . . . . . 6 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → ((𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))))
112111exbidv 1850 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ ∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 ))))))
113 eqeq2 2633 . . . . 5 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → ((𝐺 Σg 𝐹) = 𝑥 ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊))))
114112, 113bibi12d 335 . . . 4 (𝑥 = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) → ((∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) ↔ (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)))))
115109, 114spcv 3299 . . 3 (∀𝑥(∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ 𝑥 = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = 𝑥) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊))))
116108, 115syl 17 . 2 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (∃𝑔(𝑔:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) ∧ (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)) = (seq1( + , (𝐹𝑔))‘(#‘(𝐹 supp 0 )))) ↔ (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊))))
11783, 116mpbid 222 1 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(#‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(#‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  wne 2794  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  cio 5849  Fun wfun 5882  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650   supp csupp 7295  cen 7952  Fincfn 7955  1c1 9937   < clt 10074  cn 11020  ...cfz 12326  seqcseq 12801  #chash 13117  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750
This theorem is referenced by:  gsumval3  18308
  Copyright terms: Public domain W3C validator