MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oiso Structured version   Visualization version   GIF version

Theorem f1oiso 6601
Description: Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
f1oiso ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤
Allowed substitution hints:   𝐵(𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem f1oiso
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻:𝐴1-1-onto𝐵)
2 f1of1 6136 . . 3 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
3 df-br 4654 . . . . 5 ((𝐻𝑣)𝑆(𝐻𝑢) ↔ ⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆)
4 eleq2 2690 . . . . . . 7 (𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆 ↔ ⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}))
5 fvex 6201 . . . . . . . . 9 (𝐻𝑣) ∈ V
6 fvex 6201 . . . . . . . . 9 (𝐻𝑢) ∈ V
7 eqeq1 2626 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑣) → (𝑧 = (𝐻𝑥) ↔ (𝐻𝑣) = (𝐻𝑥)))
87anbi1d 741 . . . . . . . . . . 11 (𝑧 = (𝐻𝑣) → ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦))))
98anbi1d 741 . . . . . . . . . 10 (𝑧 = (𝐻𝑣) → (((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
1092rexbidv 3057 . . . . . . . . 9 (𝑧 = (𝐻𝑣) → (∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
11 eqeq1 2626 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑢) → (𝑤 = (𝐻𝑦) ↔ (𝐻𝑢) = (𝐻𝑦)))
1211anbi2d 740 . . . . . . . . . . 11 (𝑤 = (𝐻𝑢) → (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦))))
1312anbi1d 741 . . . . . . . . . 10 (𝑤 = (𝐻𝑢) → ((((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
14132rexbidv 3057 . . . . . . . . 9 (𝑤 = (𝐻𝑢) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
155, 6, 10, 14opelopab 4997 . . . . . . . 8 (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦))
16 anass 681 . . . . . . . . . . . . . . 15 ((((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)))
17 f1fveq 6519 . . . . . . . . . . . . . . . . . 18 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑥𝐴)) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑣 = 𝑥))
18 equcom 1945 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑥𝑥 = 𝑣)
1917, 18syl6bb 276 . . . . . . . . . . . . . . . . 17 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑥𝐴)) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑥 = 𝑣))
2019anassrs 680 . . . . . . . . . . . . . . . 16 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑥 = 𝑣))
2120anbi1d 741 . . . . . . . . . . . . . . 15 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (((𝐻𝑣) = (𝐻𝑥) ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
2216, 21syl5bb 272 . . . . . . . . . . . . . 14 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → ((((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
2322rexbidv 3052 . . . . . . . . . . . . 13 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (∃𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
24 r19.42v 3092 . . . . . . . . . . . . 13 (∃𝑦𝐴 (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)))
2523, 24syl6bb 276 . . . . . . . . . . . 12 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (∃𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
2625rexbidva 3049 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
27 breq1 4656 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (𝑥𝑅𝑦𝑣𝑅𝑦))
2827anbi2d 740 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦) ↔ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
2928rexbidv 3052 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3029ceqsrexv 3336 . . . . . . . . . . . 12 (𝑣𝐴 → (∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3130adantl 482 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3226, 31bitrd 268 . . . . . . . . . 10 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
33 f1fveq 6519 . . . . . . . . . . . . . . 15 ((𝐻:𝐴1-1𝐵 ∧ (𝑢𝐴𝑦𝐴)) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑢 = 𝑦))
34 equcom 1945 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦𝑦 = 𝑢)
3533, 34syl6bb 276 . . . . . . . . . . . . . 14 ((𝐻:𝐴1-1𝐵 ∧ (𝑢𝐴𝑦𝐴)) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑦 = 𝑢))
3635anassrs 680 . . . . . . . . . . . . 13 (((𝐻:𝐴1-1𝐵𝑢𝐴) ∧ 𝑦𝐴) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑦 = 𝑢))
3736anbi1d 741 . . . . . . . . . . . 12 (((𝐻:𝐴1-1𝐵𝑢𝐴) ∧ 𝑦𝐴) → (((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ (𝑦 = 𝑢𝑣𝑅𝑦)))
3837rexbidva 3049 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ ∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦)))
39 breq2 4657 . . . . . . . . . . . . 13 (𝑦 = 𝑢 → (𝑣𝑅𝑦𝑣𝑅𝑢))
4039ceqsrexv 3336 . . . . . . . . . . . 12 (𝑢𝐴 → (∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4140adantl 482 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4238, 41bitrd 268 . . . . . . . . . 10 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4332, 42sylan9bb 736 . . . . . . . . 9 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ (𝐻:𝐴1-1𝐵𝑢𝐴)) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢))
4443anandis 873 . . . . . . . 8 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢))
4515, 44syl5bb 272 . . . . . . 7 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} ↔ 𝑣𝑅𝑢))
464, 45sylan9bbr 737 . . . . . 6 (((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) ∧ 𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆𝑣𝑅𝑢))
4746an32s 846 . . . . 5 (((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣𝐴𝑢𝐴)) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆𝑣𝑅𝑢))
483, 47syl5rbb 273 . . . 4 (((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣𝐴𝑢𝐴)) → (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
4948ralrimivva 2971 . . 3 ((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
502, 49sylan 488 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
51 df-isom 5897 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢))))
521, 50, 51sylanbrc 698 1 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cop 4183   class class class wbr 4653  {copab 4712  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by:  f1oiso2  6602  hartogslem1  8447  cnso  14976
  Copyright terms: Public domain W3C validator