Proof of Theorem hartogslem1
| Step | Hyp | Ref
| Expression |
| 1 | | hartogslem.2 |
. . . . 5
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 2 | 1 | dmeqi 5325 |
. . . 4
⊢ dom 𝐹 = dom {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 3 | | dmopab 5335 |
. . . 4
⊢ dom
{〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑟 ∣ ∃𝑦(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 4 | 2, 3 | eqtri 2644 |
. . 3
⊢ dom 𝐹 = {𝑟 ∣ ∃𝑦(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 5 | | simp3 1063 |
. . . . . . . 8
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) |
| 6 | | simp1 1061 |
. . . . . . . . 9
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → dom 𝑟 ⊆ 𝐴) |
| 7 | | xpss12 5225 |
. . . . . . . . 9
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ dom 𝑟 ⊆ 𝐴) → (dom 𝑟 × dom 𝑟) ⊆ (𝐴 × 𝐴)) |
| 8 | 6, 6, 7 | syl2anc 693 |
. . . . . . . 8
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → (dom 𝑟 × dom 𝑟) ⊆ (𝐴 × 𝐴)) |
| 9 | 5, 8 | sstrd 3613 |
. . . . . . 7
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ⊆ (𝐴 × 𝐴)) |
| 10 | | selpw 4165 |
. . . . . . 7
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑟 ⊆ (𝐴 × 𝐴)) |
| 11 | 9, 10 | sylibr 224 |
. . . . . 6
⊢ ((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
| 12 | 11 | ad2antrr 762 |
. . . . 5
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
| 13 | 12 | exlimiv 1858 |
. . . 4
⊢
(∃𝑦(((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐴)) |
| 14 | 13 | abssi 3677 |
. . 3
⊢ {𝑟 ∣ ∃𝑦(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} ⊆ 𝒫 (𝐴 × 𝐴) |
| 15 | 4, 14 | eqsstri 3635 |
. 2
⊢ dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) |
| 16 | | funopab4 5925 |
. . 3
⊢ Fun
{〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 17 | 1 | funeqi 5909 |
. . 3
⊢ (Fun
𝐹 ↔ Fun {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}) |
| 18 | 16, 17 | mpbir 221 |
. 2
⊢ Fun 𝐹 |
| 19 | | breq1 4656 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≼ 𝐴 ↔ 𝑦 ≼ 𝐴)) |
| 20 | 19 | elrab 3363 |
. . . . 5
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 21 | | brdomi 7966 |
. . . . . . 7
⊢ (𝑦 ≼ 𝐴 → ∃𝑓 𝑓:𝑦–1-1→𝐴) |
| 22 | | f1f 6101 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑦–1-1→𝐴 → 𝑓:𝑦⟶𝐴) |
| 23 | 22 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓:𝑦⟶𝐴) |
| 24 | | frn 6053 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑦⟶𝐴 → ran 𝑓 ⊆ 𝐴) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ran 𝑓 ⊆ 𝐴) |
| 26 | | resss 5422 |
. . . . . . . . . . . . . . 15
⊢ ( I
↾ ran 𝑓) ⊆
I |
| 27 | | ssun2 3777 |
. . . . . . . . . . . . . . 15
⊢ I
⊆ (𝑅 ∪ I
) |
| 28 | 26, 27 | sstri 3612 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ ran 𝑓) ⊆
(𝑅 ∪ I
) |
| 29 | | f1oi 6174 |
. . . . . . . . . . . . . . 15
⊢ ( I
↾ ran 𝑓):ran 𝑓–1-1-onto→ran
𝑓 |
| 30 | | f1of 6137 |
. . . . . . . . . . . . . . 15
⊢ (( I
↾ ran 𝑓):ran 𝑓–1-1-onto→ran
𝑓 → ( I ↾ ran
𝑓):ran 𝑓⟶ran 𝑓) |
| 31 | | fssxp 6060 |
. . . . . . . . . . . . . . 15
⊢ (( I
↾ ran 𝑓):ran 𝑓⟶ran 𝑓 → ( I ↾ ran 𝑓) ⊆ (ran 𝑓 × ran 𝑓)) |
| 32 | 29, 30, 31 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ ran 𝑓) ⊆ (ran
𝑓 × ran 𝑓) |
| 33 | 28, 32 | ssini 3836 |
. . . . . . . . . . . . 13
⊢ ( I
↾ ran 𝑓) ⊆
((𝑅 ∪ I ) ∩ (ran
𝑓 × ran 𝑓)) |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓))) |
| 35 | | inss2 3834 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓) |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) |
| 37 | 25, 34, 36 | 3jca 1242 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓))) |
| 38 | | eloni 5733 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ On → Ord 𝑦) |
| 39 | | ordwe 5736 |
. . . . . . . . . . . . . . 15
⊢ (Ord
𝑦 → E We 𝑦) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ On → E We 𝑦) |
| 41 | 40 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → E We 𝑦) |
| 42 | | f1f1orn 6148 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝑦–1-1→𝐴 → 𝑓:𝑦–1-1-onto→ran
𝑓) |
| 43 | 42 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓:𝑦–1-1-onto→ran
𝑓) |
| 44 | | hartogslem.3 |
. . . . . . . . . . . . . . . 16
⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} |
| 45 | | f1oiso 6601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝑦–1-1-onto→ran
𝑓 ∧ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)}) → 𝑓 Isom E , 𝑅 (𝑦, ran 𝑓)) |
| 46 | 43, 44, 45 | sylancl 694 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓 Isom E , 𝑅 (𝑦, ran 𝑓)) |
| 47 | | isores2 6583 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Isom E , 𝑅 (𝑦, ran 𝑓) ↔ 𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓)) |
| 48 | 46, 47 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓)) |
| 49 | | isowe 6599 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) → ( E We 𝑦 ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓)) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ( E We 𝑦 ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓)) |
| 51 | 41, 50 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓) |
| 52 | | weso 5105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓) |
| 54 | | inss2 3834 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓) |
| 55 | 54 | brel 5168 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥 → (𝑥 ∈ ran 𝑓 ∧ 𝑥 ∈ ran 𝑓)) |
| 56 | 55 | simpld 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥 → 𝑥 ∈ ran 𝑓) |
| 57 | | sonr 5056 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) Or ran 𝑓 ∧ 𝑥 ∈ ran 𝑓) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
| 58 | 53, 56, 57 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) ∧ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
| 59 | 58 | pm2.01da 458 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
| 60 | 59 | alrimiv 1855 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ∀𝑥 ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
| 61 | | intirr 5514 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥(𝑅 ∩ (ran 𝑓 × ran 𝑓))𝑥) |
| 62 | 60, 61 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅) |
| 63 | | disj3 4021 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∩ I ) = ∅ ↔ (𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )) |
| 64 | 62, 63 | sylib 208 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )) |
| 65 | | weeq1 5102 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
| 66 | 64, 65 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) We ran 𝑓 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
| 67 | 51, 66 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓) |
| 68 | 38 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → Ord 𝑦) |
| 69 | | isoeq3 6569 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) ↔ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓))) |
| 70 | 64, 69 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑓 Isom E , (𝑅 ∩ (ran 𝑓 × ran 𝑓))(𝑦, ran 𝑓) ↔ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓))) |
| 71 | 48, 70 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)) |
| 72 | | vex 3203 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
| 73 | 72 | rnex 7100 |
. . . . . . . . . . . . . . 15
⊢ ran 𝑓 ∈ V |
| 74 | | exse 5078 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑓 ∈ V → ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓) |
| 75 | 73, 74 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓 |
| 76 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
OrdIso(((𝑅 ∩
(ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) |
| 77 | 76 | oieu 8444 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓 ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) Se ran 𝑓) → ((Ord 𝑦 ∧ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)) ↔ (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)))) |
| 78 | 67, 75, 77 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ((Ord 𝑦 ∧ 𝑓 Isom E , ( (𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )(𝑦, ran 𝑓)) ↔ (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)))) |
| 79 | 68, 71, 78 | mpbi2and 956 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → (𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓) ∧ 𝑓 = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))) |
| 80 | 79 | simpld 475 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
| 81 | 73, 73 | xpex 6962 |
. . . . . . . . . . . . 13
⊢ (ran
𝑓 × ran 𝑓) ∈ V |
| 82 | 81 | inex2 4800 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∈ V |
| 83 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ⊆ (ran 𝑓 × ran 𝑓) ↔ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓))) |
| 84 | 35, 83 | mpbiri 248 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → 𝑟 ⊆ (ran 𝑓 × ran 𝑓)) |
| 85 | | dmss 5323 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ⊆ (ran 𝑓 × ran 𝑓) → dom 𝑟 ⊆ dom (ran 𝑓 × ran 𝑓)) |
| 86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 ⊆ dom (ran 𝑓 × ran 𝑓)) |
| 87 | | dmxpid 5345 |
. . . . . . . . . . . . . . . . . 18
⊢ dom (ran
𝑓 × ran 𝑓) = ran 𝑓 |
| 88 | 86, 87 | syl6sseq 3651 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 ⊆ ran 𝑓) |
| 89 | | dmresi 5457 |
. . . . . . . . . . . . . . . . . 18
⊢ dom ( I
↾ ran 𝑓) = ran 𝑓 |
| 90 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (( I ↾ ran 𝑓) ⊆ 𝑟 ↔ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)))) |
| 91 | 33, 90 | mpbiri 248 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ( I ↾ ran 𝑓) ⊆ 𝑟) |
| 92 | | dmss 5323 |
. . . . . . . . . . . . . . . . . . 19
⊢ (( I
↾ ran 𝑓) ⊆
𝑟 → dom ( I ↾
ran 𝑓) ⊆ dom 𝑟) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom ( I ↾ ran 𝑓) ⊆ dom 𝑟) |
| 94 | 89, 93 | syl5eqssr 3650 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ran 𝑓 ⊆ dom 𝑟) |
| 95 | 88, 94 | eqssd 3620 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom 𝑟 = ran 𝑓) |
| 96 | 95 | sseq1d 3632 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (dom 𝑟 ⊆ 𝐴 ↔ ran 𝑓 ⊆ 𝐴)) |
| 97 | 95 | reseq2d 5396 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ( I ↾ dom 𝑟) = ( I ↾ ran 𝑓)) |
| 98 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → 𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓))) |
| 99 | 97, 98 | sseq12d 3634 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)))) |
| 100 | 95 | sqxpeqd 5141 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (dom 𝑟 × dom 𝑟) = (ran 𝑓 × ran 𝑓)) |
| 101 | 98, 100 | sseq12d 3634 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ⊆ (dom 𝑟 × dom 𝑟) ↔ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓))) |
| 102 | 96, 99, 101 | 3anbi123d 1399 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ↔ (ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)))) |
| 103 | | difeq1 3721 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ∖ I ) = (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I )) |
| 104 | | difun2 4048 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∪ I ) ∖ I ) = (𝑅 ∖ I ) |
| 105 | 104 | ineq1i 3810 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∪ I ) ∖ I ) ∩
(ran 𝑓 × ran 𝑓)) = ((𝑅 ∖ I ) ∩ (ran 𝑓 × ran 𝑓)) |
| 106 | | indif1 3871 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∪ I ) ∖ I ) ∩
(ran 𝑓 × ran 𝑓)) = (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) |
| 107 | | indif1 3871 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∖ I ) ∩ (ran 𝑓 × ran 𝑓)) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) |
| 108 | 105, 106,
107 | 3eqtr3i 2652 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) |
| 109 | 103, 108 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑟 ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I )) |
| 110 | | weeq1 5102 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → ((𝑟 ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We dom 𝑟)) |
| 111 | 109, 110 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((𝑟 ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We dom 𝑟)) |
| 112 | | weeq2 5103 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑟 = ran 𝑓 → (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
| 113 | 95, 112 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
| 114 | 111, 113 | bitrd 268 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((𝑟 ∖ I ) We dom 𝑟 ↔ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓)) |
| 115 | 102, 114 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ↔ ((ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓))) |
| 116 | | oieq1 8417 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑟 ∖ I ) = ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟)) |
| 117 | 109, 116 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟)) |
| 118 | | oieq2 8418 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
𝑟 = ran 𝑓 → OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
| 119 | 95, 118 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
| 120 | 117, 119 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → OrdIso((𝑟 ∖ I ), dom 𝑟) = OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
| 121 | 120 | dmeqd 5326 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) |
| 122 | 121 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → (𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟) ↔ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓))) |
| 123 | 115, 122 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑟 = ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) → ((((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) ↔ (((ran 𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓) ∧ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)))) |
| 124 | 82, 123 | spcev 3300 |
. . . . . . . . . . 11
⊢ ((((ran
𝑓 ⊆ 𝐴 ∧ ( I ↾ ran 𝑓) ⊆ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∪ I ) ∩ (ran 𝑓 × ran 𝑓)) ⊆ (ran 𝑓 × ran 𝑓)) ∧ ((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ) We ran 𝑓) ∧ 𝑦 = dom OrdIso(((𝑅 ∩ (ran 𝑓 × ran 𝑓)) ∖ I ), ran 𝑓)) → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) |
| 125 | 37, 67, 80, 124 | syl21anc 1325 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ On ∧ 𝑓:𝑦–1-1→𝐴) → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) |
| 126 | 125 | ex 450 |
. . . . . . . . 9
⊢ (𝑦 ∈ On → (𝑓:𝑦–1-1→𝐴 → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))) |
| 127 | 126 | exlimdv 1861 |
. . . . . . . 8
⊢ (𝑦 ∈ On → (∃𝑓 𝑓:𝑦–1-1→𝐴 → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))) |
| 128 | 127 | imp 445 |
. . . . . . 7
⊢ ((𝑦 ∈ On ∧ ∃𝑓 𝑓:𝑦–1-1→𝐴) → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) |
| 129 | 21, 128 | sylan2 491 |
. . . . . 6
⊢ ((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) → ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) |
| 130 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) |
| 131 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑟 ∈ V |
| 132 | 131 | dmex 7099 |
. . . . . . . . . . . 12
⊢ dom 𝑟 ∈ V |
| 133 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
OrdIso((𝑟 ∖ I
), dom 𝑟) = OrdIso((𝑟 ∖ I ), dom 𝑟) |
| 134 | 133 | oion 8441 |
. . . . . . . . . . . 12
⊢ (dom
𝑟 ∈ V → dom
OrdIso((𝑟 ∖ I ), dom
𝑟) ∈
On) |
| 135 | 132, 134 | ax-mp 5 |
. . . . . . . . . . 11
⊢ dom
OrdIso((𝑟 ∖ I ), dom
𝑟) ∈
On |
| 136 | 130, 135 | syl6eqel 2709 |
. . . . . . . . . 10
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 ∈ On) |
| 137 | 136 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → 𝑦 ∈ On) |
| 138 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑟 ∖ I ) We dom 𝑟) |
| 139 | 133 | oien 8443 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑟 ∈ V ∧ (𝑟 ∖ I ) We dom 𝑟) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) ≈ dom 𝑟) |
| 140 | 132, 138,
139 | sylancr 695 |
. . . . . . . . . . . 12
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → dom OrdIso((𝑟 ∖ I ), dom 𝑟) ≈ dom 𝑟) |
| 141 | 130, 140 | eqbrtrd 4675 |
. . . . . . . . . . 11
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → 𝑦 ≈ dom 𝑟) |
| 142 | 141 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → 𝑦 ≈ dom 𝑟) |
| 143 | | simpll1 1100 |
. . . . . . . . . . 11
⊢ ((((dom
𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → dom 𝑟 ⊆ 𝐴) |
| 144 | | ssdomg 8001 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → (dom 𝑟 ⊆ 𝐴 → dom 𝑟 ≼ 𝐴)) |
| 145 | 144 | imp 445 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ dom 𝑟 ⊆ 𝐴) → dom 𝑟 ≼ 𝐴) |
| 146 | 143, 145 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → dom 𝑟 ≼ 𝐴) |
| 147 | | endomtr 8014 |
. . . . . . . . . 10
⊢ ((𝑦 ≈ dom 𝑟 ∧ dom 𝑟 ≼ 𝐴) → 𝑦 ≼ 𝐴) |
| 148 | 142, 146,
147 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → 𝑦 ≼ 𝐴) |
| 149 | 137, 148 | jca 554 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) |
| 150 | 149 | ex 450 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴))) |
| 151 | 150 | exlimdv 1861 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴))) |
| 152 | 129, 151 | impbid2 216 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) ↔ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))) |
| 153 | 20, 152 | syl5bb 272 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ↔ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟)))) |
| 154 | 153 | abbi2dv 2742 |
. . 3
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} = {𝑦 ∣ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}) |
| 155 | 1 | rneqi 5352 |
. . . 4
⊢ ran 𝐹 = ran {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 156 | | rnopab 5370 |
. . . 4
⊢ ran
{〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} = {𝑦 ∣ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 157 | 155, 156 | eqtri 2644 |
. . 3
⊢ ran 𝐹 = {𝑦 ∣ ∃𝑟(((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} |
| 158 | 154, 157 | syl6reqr 2675 |
. 2
⊢ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴}) |
| 159 | 15, 18, 158 | 3pm3.2i 1239 |
1
⊢ (dom
𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) |