![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fveq | Structured version Visualization version GIF version |
Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
Ref | Expression |
---|---|
f1fveq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1veqaeq 6514 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) | |
2 | fveq2 6191 | . 2 ⊢ (𝐶 = 𝐷 → (𝐹‘𝐶) = (𝐹‘𝐷)) | |
3 | 1, 2 | impbid1 215 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) ↔ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 –1-1→wf1 5885 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fv 5896 |
This theorem is referenced by: f1elima 6520 f1dom3fv3dif 6525 cocan1 6546 isof1oidb 6574 isosolem 6597 f1oiso 6601 weniso 6604 f1oweALT 7152 2dom 8029 xpdom2 8055 wemapwe 8594 fseqenlem1 8847 dfac12lem2 8966 infpssrlem4 9128 fin23lem28 9162 isf32lem7 9181 iundom2g 9362 canthnumlem 9470 canthwelem 9472 canthp1lem2 9475 pwfseqlem4 9484 seqf1olem1 12840 bitsinv2 15165 bitsf1 15168 sadasslem 15192 sadeq 15194 bitsuz 15196 eulerthlem2 15487 f1ocpbllem 16184 f1ovscpbl 16186 fthi 16578 ghmf1 17689 f1omvdmvd 17863 odf1 17979 dprdf1o 18431 ply1scln0 19661 zntoslem 19905 iporthcom 19980 cnt0 21150 cnhaus 21158 imasdsf1olem 22178 imasf1oxmet 22180 dyadmbl 23368 vitalilem3 23379 dvcnvlem 23739 facth1 23924 usgredg2v 26119 erdszelem9 31181 cvmliftmolem1 31263 msubff1 31453 metf1o 33551 rngoisocnv 33780 laut11 35372 gicabl 37669 fourierdlem50 40373 |
Copyright terms: Public domain | W3C validator |