| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 2 | 1 | fclselbas 21820 |
. . . 4
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ ∪ 𝐽) |
| 3 | | toponuni 20719 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 4 | 3 | adantr 481 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝑋 = ∪ 𝐽) |
| 5 | 4 | eleq2d 2687 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ 𝐽)) |
| 6 | 2, 5 | syl5ibr 236 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ 𝑋)) |
| 7 | | fclsneii 21821 |
. . . . . 6
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑠 ∈ 𝐹) → (𝑛 ∩ 𝑠) ≠ ∅) |
| 8 | 7 | 3expb 1266 |
. . . . 5
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑠 ∈ 𝐹)) → (𝑛 ∩ 𝑠) ≠ ∅) |
| 9 | 8 | ralrimivva 2971 |
. . . 4
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅) |
| 10 | 9 | a1i 11 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅)) |
| 11 | 6, 10 | jcad 555 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅))) |
| 12 | | topontop 20718 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 13 | 12 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝐽 ∈ Top) |
| 14 | | simprl 794 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝑜 ∈ 𝐽) |
| 15 | | simprr 796 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝐴 ∈ 𝑜) |
| 16 | | opnneip 20923 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) |
| 17 | 13, 14, 15, 16 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴})) |
| 18 | | ineq1 3807 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑜 → (𝑛 ∩ 𝑠) = (𝑜 ∩ 𝑠)) |
| 19 | 18 | neeq1d 2853 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑜 → ((𝑛 ∩ 𝑠) ≠ ∅ ↔ (𝑜 ∩ 𝑠) ≠ ∅)) |
| 20 | 19 | ralbidv 2986 |
. . . . . . . . 9
⊢ (𝑛 = 𝑜 → (∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ ↔ ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) |
| 21 | 20 | rspcv 3305 |
. . . . . . . 8
⊢ (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) |
| 22 | 17, 21 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) |
| 23 | 22 | expr 643 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (𝐴 ∈ 𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
| 24 | 23 | com23 86 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
| 25 | 24 | ralrimdva 2969 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅ → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
| 26 | 25 | imdistanda 729 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅) → (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 27 | | fclsopn 21818 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 28 | 26, 27 | sylibrd 249 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅) → 𝐴 ∈ (𝐽 fClus 𝐹))) |
| 29 | 11, 28 | impbid 202 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅))) |