MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneip Structured version   Visualization version   GIF version

Theorem opnneip 20923
Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
opnneip ((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))

Proof of Theorem opnneip
StepHypRef Expression
1 snssi 4339 . 2 (𝑃𝑁 → {𝑃} ⊆ 𝑁)
2 opnneiss 20922 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽 ∧ {𝑃} ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
31, 2syl3an3 1361 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037  wcel 1990  wss 3574  {csn 4177  cfv 5888  Topctop 20698  neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-nei 20902
This theorem is referenced by:  opnnei  20924  neindisj2  20927  iscnp4  21067  cnpnei  21068  hausnei2  21157  llynlly  21280  nllyrest  21289  nllyidm  21292  hausllycmp  21297  cldllycmp  21298  txnlly  21440  flimfil  21773  flimopn  21779  fbflim2  21781  hausflimlem  21783  flimcf  21786  flimsncls  21790  fclsnei  21823  fcfnei  21839  cnextcn  21871  utopreg  22056  blnei  22307  cnllycmp  22755  flimcfil  23112  limcflf  23645  rrhre  30065  cvmlift2lem12  31296
  Copyright terms: Public domain W3C validator