MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2i2 Structured version   Visualization version   GIF version

Theorem fin2i2 9140
Description: A II-finite set contains minimal elements for every nonempty chain. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin2i2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)

Proof of Theorem fin2i2
Dummy variables 𝑐 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . 3 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵 ⊆ 𝒫 𝐴)
2 simpll 790 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐴 ∈ FinII)
3 ssrab2 3687 . . . . . 6 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴
43a1i 11 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴)
5 simprl 794 . . . . . 6 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵 ≠ ∅)
6 fin23lem7 9138 . . . . . 6 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅)
72, 1, 5, 6syl3anc 1326 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅)
8 sorpsscmpl 6948 . . . . . 6 ( [] Or 𝐵 → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
98ad2antll 765 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
10 fin2i 9117 . . . . 5 (((𝐴 ∈ FinII ∧ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴) ∧ ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
112, 4, 7, 9, 10syl22anc 1327 . . . 4 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
12 sorpssuni 6946 . . . . 5 ( [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}))
139, 12syl 17 . . . 4 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}))
1411, 13mpbird 247 . . 3 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → ∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛)
15 psseq2 3695 . . . 4 (𝑧 = (𝐴𝑚) → (𝑤𝑧𝑤 ⊊ (𝐴𝑚)))
16 psseq2 3695 . . . 4 (𝑛 = (𝐴𝑤) → (𝑚𝑛𝑚 ⊊ (𝐴𝑤)))
17 pssdifcom2 4055 . . . 4 ((𝑚𝐴𝑤𝐴) → (𝑤 ⊊ (𝐴𝑚) ↔ 𝑚 ⊊ (𝐴𝑤)))
1815, 16, 17fin23lem11 9139 . . 3 (𝐵 ⊆ 𝒫 𝐴 → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧))
191, 14, 18sylc 65 . 2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧)
20 sorpssint 6947 . . 3 ( [] Or 𝐵 → (∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 𝐵𝐵))
2120ad2antll 765 . 2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → (∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 𝐵𝐵))
2219, 21mpbid 222 1 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574  wpss 3575  c0 3915  𝒫 cpw 4158   cuni 4436   cint 4475   Or wor 5034   [] crpss 6936  FinIIcfin2 9101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-rpss 6937  df-fin2 9108
This theorem is referenced by:  isfin2-2  9141  fin23lem40  9173  fin2so  33396
  Copyright terms: Public domain W3C validator