Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fin2so Structured version   Visualization version   GIF version

Theorem fin2so 33396
Description: Any totally ordered Tarski-finite set is finite; in particular, no amorphous set can be ordered. Theorem 2 of [Levy58]] p. 4. (Contributed by Brendan Leahy, 28-Jun-2019.)
Assertion
Ref Expression
fin2so ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝐴 ∈ Fin)

Proof of Theorem fin2so
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 798 . . . . . . . . . . . 12 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → 𝐴 ∈ FinII)
2 ssrab2 3687 . . . . . . . . . . . . . . . . . . 19 {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝑥
3 sstr 3611 . . . . . . . . . . . . . . . . . . 19 (({𝑤𝑥𝑤𝑅𝑣} ⊆ 𝑥𝑥𝐴) → {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝐴)
42, 3mpan 706 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝐴)
5 elpw2g 4827 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ FinII → ({𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴 ↔ {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝐴))
65biimpar 502 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ FinII ∧ {𝑤𝑥𝑤𝑅𝑣} ⊆ 𝐴) → {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴)
74, 6sylan2 491 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ FinII𝑥𝐴) → {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴)
87ralrimivw 2967 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ FinII𝑥𝐴) → ∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴)
9 vex 3203 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
109rabex 4813 . . . . . . . . . . . . . . . . . 18 {𝑤𝑥𝑤𝑅𝑣} ∈ V
1110rgenw 2924 . . . . . . . . . . . . . . . . 17 𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ V
12 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})
13 eleq1 2689 . . . . . . . . . . . . . . . . . 18 (𝑦 = {𝑤𝑥𝑤𝑅𝑣} → (𝑦 ∈ 𝒫 𝐴 ↔ {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴))
1412, 13ralrnmpt 6368 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ V → (∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴 ↔ ∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴))
1511, 14ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴 ↔ ∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ 𝒫 𝐴)
168, 15sylibr 224 . . . . . . . . . . . . . . 15 ((𝐴 ∈ FinII𝑥𝐴) → ∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴)
17 dfss3 3592 . . . . . . . . . . . . . . 15 (ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴 ↔ ∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴)
1816, 17sylibr 224 . . . . . . . . . . . . . 14 ((𝐴 ∈ FinII𝑥𝐴) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴)
1918adantlr 751 . . . . . . . . . . . . 13 (((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴)
2019adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴)
2110, 12dmmpti 6023 . . . . . . . . . . . . . . 15 dom (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = 𝑥
2221neeq1i 2858 . . . . . . . . . . . . . 14 (dom (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅ ↔ 𝑥 ≠ ∅)
23 dm0rn0 5342 . . . . . . . . . . . . . . 15 (dom (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = ∅ ↔ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = ∅)
2423necon3bii 2846 . . . . . . . . . . . . . 14 (dom (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅ ↔ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅)
2522, 24sylbb1 227 . . . . . . . . . . . . 13 (𝑥 ≠ ∅ → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅)
2625adantl 482 . . . . . . . . . . . 12 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅)
27 soss 5053 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → (𝑅 Or 𝐴𝑅 Or 𝑥))
2827impcom 446 . . . . . . . . . . . . . . 15 ((𝑅 Or 𝐴𝑥𝐴) → 𝑅 Or 𝑥)
29 porpss 6941 . . . . . . . . . . . . . . . . 17 [] Po ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})
3029a1i 11 . . . . . . . . . . . . . . . 16 (𝑅 Or 𝑥 → [] Po ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
31 solin 5058 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → (𝑣𝑅𝑦𝑣 = 𝑦𝑦𝑅𝑣))
32 fin2solem 33395 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → (𝑣𝑅𝑦 → {𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦}))
33 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑦 → (𝑤𝑅𝑣𝑤𝑅𝑦))
3433rabbidv 3189 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑦 → {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦})
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → (𝑣 = 𝑦 → {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦}))
36 fin2solem 33395 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑣𝑥)) → (𝑦𝑅𝑣 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
3736ancom2s 844 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → (𝑦𝑅𝑣 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
3832, 35, 373orim123d 1407 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → ((𝑣𝑅𝑦𝑣 = 𝑦𝑦𝑅𝑣) → ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣})))
3931, 38mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 Or 𝑥 ∧ (𝑣𝑥𝑦𝑥)) → ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
4039ralrimivva 2971 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 Or 𝑥 → ∀𝑣𝑥𝑦𝑥 ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
41 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ↔ {𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦}))
42 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → (𝑢 = {𝑤𝑥𝑤𝑅𝑦} ↔ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦}))
43 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → ({𝑤𝑥𝑤𝑅𝑦} [] 𝑢 ↔ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
4441, 42, 433orbi123d 1398 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → ((𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢) ↔ ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣})))
4544ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = {𝑤𝑥𝑤𝑅𝑣} → (∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢) ↔ ∀𝑦𝑥 ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣})))
4612, 45ralrnmpt 6368 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ V → (∀𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢) ↔ ∀𝑣𝑥𝑦𝑥 ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣})))
4711, 46ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢) ↔ ∀𝑣𝑥𝑦𝑥 ({𝑤𝑥𝑤𝑅𝑣} [] {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑣}))
4840, 47sylibr 224 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Or 𝑥 → ∀𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢))
4948r19.21bi 2932 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝑥𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})) → ∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢))
509rabex 4813 . . . . . . . . . . . . . . . . . . . . 21 {𝑤𝑥𝑤𝑅𝑦} ∈ V
5150rgenw 2924 . . . . . . . . . . . . . . . . . . . 20 𝑦𝑥 {𝑤𝑥𝑤𝑅𝑦} ∈ V
5234cbvmptv 4750 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = (𝑦𝑥 ↦ {𝑤𝑥𝑤𝑅𝑦})
53 breq2 4657 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = {𝑤𝑥𝑤𝑅𝑦} → (𝑢 [] 𝑧𝑢 [] {𝑤𝑥𝑤𝑅𝑦}))
54 eqeq2 2633 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = {𝑤𝑥𝑤𝑅𝑦} → (𝑢 = 𝑧𝑢 = {𝑤𝑥𝑤𝑅𝑦}))
55 breq1 4656 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = {𝑤𝑥𝑤𝑅𝑦} → (𝑧 [] 𝑢 ↔ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢))
5653, 54, 553orbi123d 1398 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = {𝑤𝑥𝑤𝑅𝑦} → ((𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢) ↔ (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢)))
5752, 56ralrnmpt 6368 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦𝑥 {𝑤𝑥𝑤𝑅𝑦} ∈ V → (∀𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})(𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢) ↔ ∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢)))
5851, 57ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})(𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢) ↔ ∀𝑦𝑥 (𝑢 [] {𝑤𝑥𝑤𝑅𝑦} ∨ 𝑢 = {𝑤𝑥𝑤𝑅𝑦} ∨ {𝑤𝑥𝑤𝑅𝑦} [] 𝑢))
5949, 58sylibr 224 . . . . . . . . . . . . . . . . . 18 ((𝑅 Or 𝑥𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})) → ∀𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})(𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢))
6059r19.21bi 2932 . . . . . . . . . . . . . . . . 17 (((𝑅 Or 𝑥𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})) ∧ 𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})) → (𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢))
6160anasss 679 . . . . . . . . . . . . . . . 16 ((𝑅 Or 𝑥 ∧ (𝑢 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ∧ 𝑧 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))) → (𝑢 [] 𝑧𝑢 = 𝑧𝑧 [] 𝑢))
6230, 61issod 5065 . . . . . . . . . . . . . . 15 (𝑅 Or 𝑥 → [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
6328, 62syl 17 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝑥𝐴) → [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
6463adantll 750 . . . . . . . . . . . . 13 (((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) → [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
6564adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
66 fin2i2 9140 . . . . . . . . . . . 12 (((𝐴 ∈ FinII ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ⊆ 𝒫 𝐴) ∧ (ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ≠ ∅ ∧ [] Or ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
671, 20, 26, 65, 66syl22anc 1327 . . . . . . . . . . 11 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}))
6852, 50elrnmpti 5376 . . . . . . . . . . 11 ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ↔ ∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦})
6967, 68sylib 208 . . . . . . . . . 10 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦})
70 ssel2 3598 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝑧𝑥) → 𝑧𝐴)
71 sonr 5056 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 Or 𝐴𝑧𝐴) → ¬ 𝑧𝑅𝑧)
7270, 71sylan2 491 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝑥)) → ¬ 𝑧𝑅𝑧)
7372anassrs 680 . . . . . . . . . . . . . . . . . 18 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑧𝑥) → ¬ 𝑧𝑅𝑧)
7473adantlr 751 . . . . . . . . . . . . . . . . 17 ((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → ¬ 𝑧𝑅𝑧)
7574adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → ¬ 𝑧𝑅𝑧)
76 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑧 → (𝑤𝑅𝑦𝑧𝑅𝑦))
7776elrab 3363 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦} ↔ (𝑧𝑥𝑧𝑅𝑦))
7877simplbi2 655 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑥 → (𝑧𝑅𝑦𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦}))
7978ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → (𝑧𝑅𝑦𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦}))
80 vex 3203 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
8180elint2 4482 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ↔ ∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑧𝑦)
82 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = {𝑤𝑥𝑤𝑅𝑣} → (𝑧𝑦𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣}))
8312, 82ralrnmpt 6368 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑣𝑥 {𝑤𝑥𝑤𝑅𝑣} ∈ V → (∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑧𝑦 ↔ ∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣}))
8411, 83ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦 ∈ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣})𝑧𝑦 ↔ ∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣})
8581, 84bitri 264 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ↔ ∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣})
86 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑧 → (𝑤𝑅𝑣𝑤𝑅𝑧))
8786rabbidv 3189 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑧 → {𝑤𝑥𝑤𝑅𝑣} = {𝑤𝑥𝑤𝑅𝑧})
8887eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑧 → (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣} ↔ 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑧}))
8988rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑥 → (∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣} → 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑧}))
90 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → (𝑤𝑅𝑧𝑧𝑅𝑧))
9190elrab 3363 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑧} ↔ (𝑧𝑥𝑧𝑅𝑧))
9291simprbi 480 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑧} → 𝑧𝑅𝑧)
9389, 92syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑥 → (∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣} → 𝑧𝑅𝑧))
9493adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑥𝑧𝑥) → (∀𝑣𝑥 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑣} → 𝑧𝑅𝑧))
9585, 94syl5bi 232 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥𝑧𝑥) → (𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) → 𝑧𝑅𝑧))
96 eleq2 2690 . . . . . . . . . . . . . . . . . . . . 21 ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → (𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) ↔ 𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦}))
9796imbi1d 331 . . . . . . . . . . . . . . . . . . . 20 ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ((𝑧 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) → 𝑧𝑅𝑧) ↔ (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦} → 𝑧𝑅𝑧)))
9895, 97syl5ibcom 235 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑥𝑧𝑥) → ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦} → 𝑧𝑅𝑧)))
9998imp 445 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → (𝑧 ∈ {𝑤𝑥𝑤𝑅𝑦} → 𝑧𝑅𝑧))
10079, 99syld 47 . . . . . . . . . . . . . . . . 17 (((𝑦𝑥𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → (𝑧𝑅𝑦𝑧𝑅𝑧))
101100adantlll 754 . . . . . . . . . . . . . . . 16 (((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → (𝑧𝑅𝑦𝑧𝑅𝑧))
10275, 101mtod 189 . . . . . . . . . . . . . . 15 (((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) ∧ ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦}) → ¬ 𝑧𝑅𝑦)
103102ex 450 . . . . . . . . . . . . . 14 ((((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) ∧ 𝑧𝑥) → ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ¬ 𝑧𝑅𝑦))
104103ralrimdva 2969 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝑥) → ( ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
105104reximdva 3017 . . . . . . . . . . . 12 ((𝑅 Or 𝐴𝑥𝐴) → (∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
106105adantll 750 . . . . . . . . . . 11 (((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) → (∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
107106adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → (∃𝑦𝑥 ran (𝑣𝑥 ↦ {𝑤𝑥𝑤𝑅𝑣}) = {𝑤𝑥𝑤𝑅𝑦} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
10869, 107mpd 15 . . . . . . . . 9 ((((𝐴 ∈ FinII𝑅 Or 𝐴) ∧ 𝑥𝐴) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
109108expl 648 . . . . . . . 8 ((𝐴 ∈ FinII𝑅 Or 𝐴) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
110109alrimiv 1855 . . . . . . 7 ((𝐴 ∈ FinII𝑅 Or 𝐴) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
111 df-fr 5073 . . . . . . 7 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
112110, 111sylibr 224 . . . . . 6 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝑅 Fr 𝐴)
113 simpr 477 . . . . . 6 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝑅 Or 𝐴)
114 df-we 5075 . . . . . 6 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
115112, 113, 114sylanbrc 698 . . . . 5 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝑅 We 𝐴)
116 weinxp 5186 . . . . 5 (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)
117115, 116sylib 208 . . . 4 ((𝐴 ∈ FinII𝑅 Or 𝐴) → (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)
118 sqxpexg 6963 . . . . . 6 (𝐴 ∈ FinII → (𝐴 × 𝐴) ∈ V)
119 incom 3805 . . . . . . 7 (𝑅 ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ 𝑅)
120 inex1g 4801 . . . . . . 7 ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ 𝑅) ∈ V)
121119, 120syl5eqel 2705 . . . . . 6 ((𝐴 × 𝐴) ∈ V → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
122 weeq1 5102 . . . . . . 7 (𝑧 = (𝑅 ∩ (𝐴 × 𝐴)) → (𝑧 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴))
123122spcegv 3294 . . . . . 6 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑧 𝑧 We 𝐴))
124118, 121, 1233syl 18 . . . . 5 (𝐴 ∈ FinII → ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑧 𝑧 We 𝐴))
125124imp 445 . . . 4 ((𝐴 ∈ FinII ∧ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) → ∃𝑧 𝑧 We 𝐴)
126117, 125syldan 487 . . 3 ((𝐴 ∈ FinII𝑅 Or 𝐴) → ∃𝑧 𝑧 We 𝐴)
127 ween 8858 . . 3 (𝐴 ∈ dom card ↔ ∃𝑧 𝑧 We 𝐴)
128126, 127sylibr 224 . 2 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝐴 ∈ dom card)
129 fin23 9211 . . . . 5 (𝐴 ∈ FinII𝐴 ∈ FinIII)
130 fin34 9212 . . . . 5 (𝐴 ∈ FinIII𝐴 ∈ FinIV)
131 fin45 9214 . . . . 5 (𝐴 ∈ FinIV𝐴 ∈ FinV)
132129, 130, 1313syl 18 . . . 4 (𝐴 ∈ FinII𝐴 ∈ FinV)
133 fin56 9215 . . . 4 (𝐴 ∈ FinV𝐴 ∈ FinVI)
134 fin67 9217 . . . 4 (𝐴 ∈ FinVI𝐴 ∈ FinVII)
135132, 133, 1343syl 18 . . 3 (𝐴 ∈ FinII𝐴 ∈ FinVII)
136 fin71num 9219 . . . 4 (𝐴 ∈ dom card → (𝐴 ∈ FinVII𝐴 ∈ Fin))
137136biimpac 503 . . 3 ((𝐴 ∈ FinVII𝐴 ∈ dom card) → 𝐴 ∈ Fin)
138135, 137sylan 488 . 2 ((𝐴 ∈ FinII𝐴 ∈ dom card) → 𝐴 ∈ Fin)
139128, 138syldan 487 1 ((𝐴 ∈ FinII𝑅 Or 𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cint 4475   class class class wbr 4653  cmpt 4729   Po wpo 5033   Or wor 5034   Fr wfr 5070   We wwe 5072   × cxp 5112  dom cdm 5114  ran crn 5115   [] crpss 6936  Fincfn 7955  cardccrd 8761  FinIIcfin2 9101  FinIVcfin4 9102  FinIIIcfin3 9103  FinVcfin5 9104  FinVIcfin6 9105  FinVIIcfin7 9106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-wdom 8464  df-card 8765  df-cda 8990  df-fin2 9108  df-fin4 9109  df-fin3 9110  df-fin5 9111  df-fin6 9112  df-fin7 9113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator