![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimval | Structured version Visualization version GIF version |
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flimval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flimval | ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 20711 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → 𝑋 ∈ 𝐽) |
4 | rabexg 4812 | . . 3 ⊢ (𝑋 ∈ 𝐽 → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) |
6 | simpl 473 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑗 = 𝐽) | |
7 | 6 | unieqd 4446 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = ∪ 𝐽) |
8 | 7, 1 | syl6eqr 2674 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = 𝑋) |
9 | 6 | fveq2d 6195 | . . . . . . 7 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (nei‘𝑗) = (nei‘𝐽)) |
10 | 9 | fveq1d 6193 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥})) |
11 | simpr 477 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
12 | 10, 11 | sseq12d 3634 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ↔ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)) |
13 | 8 | pweqd 4163 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
14 | 11, 13 | sseq12d 3634 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (𝑓 ⊆ 𝒫 ∪ 𝑗 ↔ 𝐹 ⊆ 𝒫 𝑋)) |
15 | 12, 14 | anbi12d 747 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗) ↔ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋))) |
16 | 8, 15 | rabeqbidv 3195 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)} = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
17 | df-flim 21743 | . . 3 ⊢ fLim = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) | |
18 | 16, 17 | ovmpt2ga 6790 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
19 | 5, 18 | mpd3an3 1425 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 ∪ cuni 4436 ran crn 5115 ‘cfv 5888 (class class class)co 6650 Topctop 20698 neicnei 20901 Filcfil 21649 fLim cflim 21738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-top 20699 df-flim 21743 |
This theorem is referenced by: elflim2 21768 |
Copyright terms: Public domain | W3C validator |