MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimval Structured version   Visualization version   Unicode version

Theorem flimval 21767
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimval.1  |-  X  = 
U. J
Assertion
Ref Expression
flimval  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( J  fLim  F )  =  { x  e.  X  |  (
( ( nei `  J
) `  { x } )  C_  F  /\  F  C_  ~P X
) } )
Distinct variable groups:    x, F    x, J    x, X

Proof of Theorem flimval
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimval.1 . . . . 5  |-  X  = 
U. J
21topopn 20711 . . . 4  |-  ( J  e.  Top  ->  X  e.  J )
32adantr 481 . . 3  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  X  e.  J
)
4 rabexg 4812 . . 3  |-  ( X  e.  J  ->  { x  e.  X  |  (
( ( nei `  J
) `  { x } )  C_  F  /\  F  C_  ~P X
) }  e.  _V )
53, 4syl 17 . 2  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  { x  e.  X  |  ( ( ( nei `  J
) `  { x } )  C_  F  /\  F  C_  ~P X
) }  e.  _V )
6 simpl 473 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  ->  j  =  J )
76unieqd 4446 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  U. j  =  U. J )
87, 1syl6eqr 2674 . . . 4  |-  ( ( j  =  J  /\  f  =  F )  ->  U. j  =  X )
96fveq2d 6195 . . . . . . 7  |-  ( ( j  =  J  /\  f  =  F )  ->  ( nei `  j
)  =  ( nei `  J ) )
109fveq1d 6193 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  ->  ( ( nei `  j
) `  { x } )  =  ( ( nei `  J
) `  { x } ) )
11 simpr 477 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  ->  f  =  F )
1210, 11sseq12d 3634 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  ( ( ( nei `  j ) `  {
x } )  C_  f 
<->  ( ( nei `  J
) `  { x } )  C_  F
) )
138pweqd 4163 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  ->  ~P U. j  =  ~P X )
1411, 13sseq12d 3634 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  ( f  C_  ~P U. j  <->  F  C_  ~P X
) )
1512, 14anbi12d 747 . . . 4  |-  ( ( j  =  J  /\  f  =  F )  ->  ( ( ( ( nei `  j ) `
 { x }
)  C_  f  /\  f  C_  ~P U. j
)  <->  ( ( ( nei `  J ) `
 { x }
)  C_  F  /\  F  C_  ~P X ) ) )
168, 15rabeqbidv 3195 . . 3  |-  ( ( j  =  J  /\  f  =  F )  ->  { x  e.  U. j  |  ( (
( nei `  j
) `  { x } )  C_  f  /\  f  C_  ~P U. j ) }  =  { x  e.  X  |  ( ( ( nei `  J ) `
 { x }
)  C_  F  /\  F  C_  ~P X ) } )
17 df-flim 21743 . . 3  |-  fLim  =  ( j  e.  Top ,  f  e.  U. ran  Fil  |->  { x  e.  U. j  |  ( (
( nei `  j
) `  { x } )  C_  f  /\  f  C_  ~P U. j ) } )
1816, 17ovmpt2ga 6790 . 2  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil  /\ 
{ x  e.  X  |  ( ( ( nei `  J ) `
 { x }
)  C_  F  /\  F  C_  ~P X ) }  e.  _V )  ->  ( J  fLim  F
)  =  { x  e.  X  |  (
( ( nei `  J
) `  { x } )  C_  F  /\  F  C_  ~P X
) } )
195, 18mpd3an3 1425 1  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( J  fLim  F )  =  { x  e.  X  |  (
( ( nei `  J
) `  { x } )  C_  F  /\  F  C_  ~P X
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436   ran crn 5115   ` cfv 5888  (class class class)co 6650   Topctop 20698   neicnei 20901   Filcfil 21649    fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-top 20699  df-flim 21743
This theorem is referenced by:  elflim2  21768
  Copyright terms: Public domain W3C validator