MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elflim2 Structured version   Visualization version   GIF version

Theorem elflim2 21768
Description: The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimval.1 𝑋 = 𝐽
Assertion
Ref Expression
elflim2 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))

Proof of Theorem elflim2
Dummy variables 𝑥 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 681 . 2 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
2 df-3an 1039 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋))
32anbi1i 731 . 2 (((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
4 df-flim 21743 . . . 4 fLim = (𝑗 ∈ Top, 𝑓 ran Fil ↦ {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)})
54elmpt2cl 6876 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil))
6 flimval.1 . . . . . 6 𝑋 = 𝐽
76flimval 21767 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
87eleq2d 2687 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ 𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)}))
9 sneq 4187 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑥} = {𝐴})
109fveq2d 6195 . . . . . . . . 9 (𝑥 = 𝐴 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝐴}))
1110sseq1d 3632 . . . . . . . 8 (𝑥 = 𝐴 → (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ↔ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))
1211anbi1d 741 . . . . . . 7 (𝑥 = 𝐴 → ((((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋) ↔ (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)))
13 ancom 466 . . . . . . 7 ((((nei‘𝐽)‘{𝐴}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))
1412, 13syl6bb 276 . . . . . 6 (𝑥 = 𝐴 → ((((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1514elrab 3363 . . . . 5 (𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ↔ (𝐴𝑋 ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
16 an12 838 . . . . 5 ((𝐴𝑋 ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1715, 16bitri 264 . . . 4 (𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
188, 17syl6bb 276 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
195, 18biadan2 674 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
201, 3, 193bitr4ri 293 1 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  wss 3574  𝒫 cpw 4158  {csn 4177   cuni 4436  ran crn 5115  cfv 5888  (class class class)co 6650  Topctop 20698  neicnei 20901  Filcfil 21649   fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-top 20699  df-flim 21743
This theorem is referenced by:  flimtop  21769  flimneiss  21770  flimelbas  21772  flimfil  21773  elflim  21775
  Copyright terms: Public domain W3C validator