MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfil Structured version   Visualization version   GIF version

Theorem fmfil 21748
Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmfil ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋))

Proof of Theorem fmfil
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmval 21747 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
2 eqid 2622 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
32fbasrn 21688 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
433comr 1273 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
5 fgcl 21682 . . 3 (ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (Fil‘𝑋))
64, 5syl 17 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (Fil‘𝑋))
71, 6eqeltrd 2701 1 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037  wcel 1990  cmpt 4729  ran crn 5115  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  fBascfbas 19734  filGencfg 19735  Filcfil 21649   FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-fil 21650  df-fm 21742
This theorem is referenced by:  fmf  21749  fmufil  21763  fmco  21765  ufldom  21766  flfnei  21795  isflf  21797  flfcnp  21808  isfcf  21838  cnpfcfi  21844  cnpfcf  21845  cnextucn  22107
  Copyright terms: Public domain W3C validator