MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfil Structured version   Visualization version   Unicode version

Theorem fmfil 21748
Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmfil  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  e.  ( Fil `  X
) )

Proof of Theorem fmfil
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fmval 21747 . 2  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  =  ( X filGen ran  ( y  e.  B  |->  ( F " y
) ) ) )
2 eqid 2622 . . . . 5  |-  ran  (
y  e.  B  |->  ( F " y ) )  =  ran  (
y  e.  B  |->  ( F " y ) )
32fbasrn 21688 . . . 4  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y --> X  /\  X  e.  A )  ->  ran  ( y  e.  B  |->  ( F " y
) )  e.  (
fBas `  X )
)
433comr 1273 . . 3  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  ->  ran  ( y  e.  B  |->  ( F " y
) )  e.  (
fBas `  X )
)
5 fgcl 21682 . . 3  |-  ( ran  ( y  e.  B  |->  ( F " y
) )  e.  (
fBas `  X )  ->  ( X filGen ran  (
y  e.  B  |->  ( F " y ) ) )  e.  ( Fil `  X ) )
64, 5syl 17 . 2  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( X filGen ran  (
y  e.  B  |->  ( F " y ) ) )  e.  ( Fil `  X ) )
71, 6eqeltrd 2701 1  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  e.  ( Fil `  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    e. wcel 1990    |-> cmpt 4729   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   fBascfbas 19734   filGencfg 19735   Filcfil 21649    FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-fil 21650  df-fm 21742
This theorem is referenced by:  fmf  21749  fmufil  21763  fmco  21765  ufldom  21766  flfnei  21795  isflf  21797  flfcnp  21808  isfcf  21838  cnpfcfi  21844  cnpfcf  21845  cnextucn  22107
  Copyright terms: Public domain W3C validator