MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnv Structured version   Visualization version   GIF version

Theorem fncnv 5962
Description: Single-rootedness (see funcnv 5958) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 5891 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
2 df-rn 5125 . . . 4 ran (𝑅 ∩ (𝐴 × 𝐵)) = dom (𝑅 ∩ (𝐴 × 𝐵))
32eqeq1i 2627 . . 3 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)
43anbi2i 730 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
5 rninxp 5573 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦)
65anbi1i 731 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
7 funcnv 5958 . . . . . 6 (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦)
8 raleq 3138 . . . . . . 7 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦))
9 biimt 350 . . . . . . . . 9 (𝑦𝐵 → (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦)))
10 moanimv 2531 . . . . . . . . . 10 (∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
11 brinxp2 5180 . . . . . . . . . . . 12 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑥𝐴𝑦𝐵𝑥𝑅𝑦))
12 3anan12 1051 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵𝑥𝑅𝑦) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1311, 12bitri 264 . . . . . . . . . . 11 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1413mobii 2493 . . . . . . . . . 10 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
15 df-rmo 2920 . . . . . . . . . . 11 (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ ∃*𝑥(𝑥𝐴𝑥𝑅𝑦))
1615imbi2i 326 . . . . . . . . . 10 ((𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
1710, 14, 163bitr4i 292 . . . . . . . . 9 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦))
189, 17syl6rbbr 279 . . . . . . . 8 (𝑦𝐵 → (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥𝐴 𝑥𝑅𝑦))
1918ralbiia 2979 . . . . . . 7 (∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦)
208, 19syl6bb 276 . . . . . 6 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
217, 20syl5bb 272 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
2221pm5.32i 669 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
23 r19.26 3064 . . . 4 (∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
246, 22, 233bitr4i 292 . . 3 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
25 ancom 466 . . 3 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))))
26 reu5 3159 . . . 4 (∃!𝑥𝐴 𝑥𝑅𝑦 ↔ (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2726ralbii 2980 . . 3 (∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2824, 25, 273bitr4i 292 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
291, 4, 283bitr2i 288 1 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  ∃*wmo 2471  wral 2912  wrex 2913  ∃!wreu 2914  ∃*wrmo 2915  cin 3573   class class class wbr 4653   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator