MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnv Structured version   Visualization version   Unicode version

Theorem fncnv 5962
Description: Single-rootedness (see funcnv 5958) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Distinct variable groups:    x, y, A    x, B, y    x, R, y

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 5891 . 2  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
2 df-rn 5125 . . . 4  |-  ran  ( R  i^i  ( A  X.  B ) )  =  dom  `' ( R  i^i  ( A  X.  B ) )
32eqeq1i 2627 . . 3  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  dom  `' ( R  i^i  ( A  X.  B ) )  =  B )
43anbi2i 730 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
5 rninxp 5573 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x R
y )
65anbi1i 731 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R
y  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
7 funcnv 5958 . . . . . 6  |-  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  ran  ( R  i^i  ( A  X.  B
) ) E* x  x ( R  i^i  ( A  X.  B
) ) y )
8 raleq 3138 . . . . . . 7  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B ) ) y ) )
9 biimt 350 . . . . . . . . 9  |-  ( y  e.  B  ->  ( E* x  e.  A  x R y  <->  ( y  e.  B  ->  E* x  e.  A  x R
y ) ) )
10 moanimv 2531 . . . . . . . . . 10  |-  ( E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) )  <-> 
( y  e.  B  ->  E* x ( x  e.  A  /\  x R y ) ) )
11 brinxp2 5180 . . . . . . . . . . . 12  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( x  e.  A  /\  y  e.  B  /\  x R y ) )
12 3anan12 1051 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B  /\  x R y )  <->  ( y  e.  B  /\  (
x  e.  A  /\  x R y ) ) )
1311, 12bitri 264 . . . . . . . . . . 11  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
1413mobii 2493 . . . . . . . . . 10  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
15 df-rmo 2920 . . . . . . . . . . 11  |-  ( E* x  e.  A  x R y  <->  E* x
( x  e.  A  /\  x R y ) )
1615imbi2i 326 . . . . . . . . . 10  |-  ( ( y  e.  B  ->  E* x  e.  A  x R y )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  x R y ) ) )
1710, 14, 163bitr4i 292 . . . . . . . . 9  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <-> 
( y  e.  B  ->  E* x  e.  A  x R y ) )
189, 17syl6rbbr 279 . . . . . . . 8  |-  ( y  e.  B  ->  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x  e.  A  x R y ) )
1918ralbiia 2979 . . . . . . 7  |-  ( A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B
) ) y  <->  A. y  e.  B  E* x  e.  A  x R
y )
208, 19syl6bb 276 . . . . . 6  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  e.  A  x R y ) )
217, 20syl5bb 272 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  B  E* x  e.  A  x R
y ) )
2221pm5.32i 669 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
23 r19.26 3064 . . . 4  |-  ( A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R y  /\  A. y  e.  B  E* x  e.  A  x R y ) )
246, 22, 233bitr4i 292 . . 3  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
25 ancom 466 . . 3  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) ) )
26 reu5 3159 . . . 4  |-  ( E! x  e.  A  x R y  <->  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2726ralbii 2980 . . 3  |-  ( A. y  e.  B  E! x  e.  A  x R y  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2824, 25, 273bitr4i 292 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  A. y  e.  B  E! x  e.  A  x R
y )
291, 4, 283bitr2i 288 1  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E*wmo 2471   A.wral 2912   E.wrex 2913   E!wreu 2914   E*wrmo 2915    i^i cin 3573   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator