Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnfvima2 Structured version   Visualization version   Unicode version

Theorem fnfvima2 39478
Description: Given an element of the preimage, its function value is in the image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
fnfvima2.1  |-  ( ph  ->  F  Fn  A )
fnfvima2.2  |-  ( ph  ->  B  e.  A )
fnfvima2.3  |-  ( ph  ->  B  e.  C )
Assertion
Ref Expression
fnfvima2  |-  ( ph  ->  ( F `  B
)  e.  ( F
" C ) )

Proof of Theorem fnfvima2
StepHypRef Expression
1 inss2 3834 . . . 4  |-  ( A  i^i  C )  C_  C
2 imass2 5501 . . . 4  |-  ( ( A  i^i  C ) 
C_  C  ->  ( F " ( A  i^i  C ) )  C_  ( F " C ) )
31, 2ax-mp 5 . . 3  |-  ( F
" ( A  i^i  C ) )  C_  ( F " C )
43a1i 11 . 2  |-  ( ph  ->  ( F " ( A  i^i  C ) ) 
C_  ( F " C ) )
5 fnfvima2.1 . . 3  |-  ( ph  ->  F  Fn  A )
6 inss1 3833 . . . 4  |-  ( A  i^i  C )  C_  A
76a1i 11 . . 3  |-  ( ph  ->  ( A  i^i  C
)  C_  A )
8 fnfvima2.2 . . . 4  |-  ( ph  ->  B  e.  A )
9 fnfvima2.3 . . . 4  |-  ( ph  ->  B  e.  C )
108, 9elind 3798 . . 3  |-  ( ph  ->  B  e.  ( A  i^i  C ) )
11 fnfvima 6496 . . 3  |-  ( ( F  Fn  A  /\  ( A  i^i  C ) 
C_  A  /\  B  e.  ( A  i^i  C
) )  ->  ( F `  B )  e.  ( F " ( A  i^i  C ) ) )
125, 7, 10, 11syl3anc 1326 . 2  |-  ( ph  ->  ( F `  B
)  e.  ( F
" ( A  i^i  C ) ) )
134, 12sseldd 3604 1  |-  ( ph  ->  ( F `  B
)  e.  ( F
" C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    i^i cin 3573    C_ wss 3574   "cima 5117    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  limsup10exlem  40004  liminflelimsupuz  40017
  Copyright terms: Public domain W3C validator