Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnfvimad Structured version   Visualization version   GIF version

Theorem fnfvimad 39459
Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnfvimad.1 (𝜑𝐹 Fn 𝐴)
fnfvimad.2 (𝜑𝐵𝐴)
fnfvimad.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
fnfvimad (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))

Proof of Theorem fnfvimad
StepHypRef Expression
1 inss2 3834 . . . 4 (𝐴𝐶) ⊆ 𝐶
2 imass2 5501 . . . 4 ((𝐴𝐶) ⊆ 𝐶 → (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶))
31, 2ax-mp 5 . . 3 (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶)
43a1i 11 . 2 (𝜑 → (𝐹 “ (𝐴𝐶)) ⊆ (𝐹𝐶))
5 fnfvimad.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
6 fnfun 5988 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
75, 6syl 17 . . . 4 (𝜑 → Fun 𝐹)
8 inss1 3833 . . . . . 6 (𝐴𝐶) ⊆ 𝐴
98a1i 11 . . . . 5 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
105fndmd 39441 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
119, 10sseqtr4d 3642 . . . 4 (𝜑 → (𝐴𝐶) ⊆ dom 𝐹)
127, 11jca 554 . . 3 (𝜑 → (Fun 𝐹 ∧ (𝐴𝐶) ⊆ dom 𝐹))
13 fnfvimad.2 . . . 4 (𝜑𝐵𝐴)
14 fnfvimad.3 . . . 4 (𝜑𝐵𝐶)
1513, 14elind 3798 . . 3 (𝜑𝐵 ∈ (𝐴𝐶))
16 funfvima2 6493 . . 3 ((Fun 𝐹 ∧ (𝐴𝐶) ⊆ dom 𝐹) → (𝐵 ∈ (𝐴𝐶) → (𝐹𝐵) ∈ (𝐹 “ (𝐴𝐶))))
1712, 15, 16sylc 65 . 2 (𝜑 → (𝐹𝐵) ∈ (𝐹 “ (𝐴𝐶)))
184, 17sseldd 3604 1 (𝜑 → (𝐹𝐵) ∈ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  cin 3573  wss 3574  dom cdm 5114  cima 5117  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  limsupmnflem  39952  liminfval2  40000
  Copyright terms: Public domain W3C validator