MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmpt2ovd Structured version   Visualization version   GIF version

Theorem fnmpt2ovd 7252
Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.)
Hypotheses
Ref Expression
fnmpt2ovd.m (𝜑𝑀 Fn (𝐴 × 𝐵))
fnmpt2ovd.s ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)
fnmpt2ovd.d ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)
fnmpt2ovd.c ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
fnmpt2ovd.v (𝜑 → (𝐴𝑋𝐵𝑌))
Assertion
Ref Expression
fnmpt2ovd (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑖,𝑗   𝐵,𝑎,𝑏,𝑖,𝑗   𝐶,𝑖,𝑗   𝐷,𝑎,𝑏   𝑀,𝑎,𝑏,𝑖,𝑗   𝑈,𝑎,𝑏,𝑖,𝑗   𝑉,𝑎,𝑏,𝑖,𝑗   𝑋,𝑎,𝑏,𝑖,𝑗   𝑌,𝑎,𝑏,𝑖,𝑗   𝜑,𝑎,𝑏,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑎,𝑏)   𝐷(𝑖,𝑗)

Proof of Theorem fnmpt2ovd
StepHypRef Expression
1 fnmpt2ovd.m . . 3 (𝜑𝑀 Fn (𝐴 × 𝐵))
2 fnmpt2ovd.c . . . . . 6 ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)
323expb 1266 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑏𝐵)) → 𝐶𝑉)
43ralrimivva 2971 . . . 4 (𝜑 → ∀𝑎𝐴𝑏𝐵 𝐶𝑉)
5 eqid 2622 . . . . 5 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑎𝐴, 𝑏𝐵𝐶)
65fnmpt2 7238 . . . 4 (∀𝑎𝐴𝑏𝐵 𝐶𝑉 → (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵))
74, 6syl 17 . . 3 (𝜑 → (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵))
8 eqfnov2 6767 . . 3 ((𝑀 Fn (𝐴 × 𝐵) ∧ (𝑎𝐴, 𝑏𝐵𝐶) Fn (𝐴 × 𝐵)) → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗)))
91, 7, 8syl2anc 693 . 2 (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗)))
10 nfcv 2764 . . . . . . . 8 𝑎𝐷
11 nfcv 2764 . . . . . . . 8 𝑏𝐷
12 nfcv 2764 . . . . . . . 8 𝑖𝐶
13 nfcv 2764 . . . . . . . 8 𝑗𝐶
14 fnmpt2ovd.s . . . . . . . 8 ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)
1510, 11, 12, 13, 14cbvmpt2 6734 . . . . . . 7 (𝑖𝐴, 𝑗𝐵𝐷) = (𝑎𝐴, 𝑏𝐵𝐶)
1615eqcomi 2631 . . . . . 6 (𝑎𝐴, 𝑏𝐵𝐶) = (𝑖𝐴, 𝑗𝐵𝐷)
1716a1i 11 . . . . 5 (𝜑 → (𝑎𝐴, 𝑏𝐵𝐶) = (𝑖𝐴, 𝑗𝐵𝐷))
1817oveqd 6667 . . . 4 (𝜑 → (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗))
1918eqeq2d 2632 . . 3 (𝜑 → ((𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) ↔ (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗)))
20192ralbidv 2989 . 2 (𝜑 → (∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑎𝐴, 𝑏𝐵𝐶)𝑗) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗)))
21 simprl 794 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝑖𝐴)
22 simprr 796 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝑗𝐵)
23 fnmpt2ovd.d . . . . . 6 ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)
24233expb 1266 . . . . 5 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → 𝐷𝑈)
25 eqid 2622 . . . . . 6 (𝑖𝐴, 𝑗𝐵𝐷) = (𝑖𝐴, 𝑗𝐵𝐷)
2625ovmpt4g 6783 . . . . 5 ((𝑖𝐴𝑗𝐵𝐷𝑈) → (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) = 𝐷)
2721, 22, 24, 26syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) = 𝐷)
2827eqeq2d 2632 . . 3 ((𝜑 ∧ (𝑖𝐴𝑗𝐵)) → ((𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) ↔ (𝑖𝑀𝑗) = 𝐷))
29282ralbidva 2988 . 2 (𝜑 → (∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = (𝑖(𝑖𝐴, 𝑗𝐵𝐷)𝑗) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
309, 20, 293bitrd 294 1 (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   × cxp 5112   Fn wfn 5883  (class class class)co 6650  cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  mpt2frlmd  20116
  Copyright terms: Public domain W3C validator