| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmpt2ovd | Structured version Visualization version Unicode version | ||
| Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) |
| Ref | Expression |
|---|---|
| fnmpt2ovd.m |
|
| fnmpt2ovd.s |
|
| fnmpt2ovd.d |
|
| fnmpt2ovd.c |
|
| fnmpt2ovd.v |
|
| Ref | Expression |
|---|---|
| fnmpt2ovd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpt2ovd.m |
. . 3
| |
| 2 | fnmpt2ovd.c |
. . . . . 6
| |
| 3 | 2 | 3expb 1266 |
. . . . 5
|
| 4 | 3 | ralrimivva 2971 |
. . . 4
|
| 5 | eqid 2622 |
. . . . 5
| |
| 6 | 5 | fnmpt2 7238 |
. . . 4
|
| 7 | 4, 6 | syl 17 |
. . 3
|
| 8 | eqfnov2 6767 |
. . 3
| |
| 9 | 1, 7, 8 | syl2anc 693 |
. 2
|
| 10 | nfcv 2764 |
. . . . . . . 8
| |
| 11 | nfcv 2764 |
. . . . . . . 8
| |
| 12 | nfcv 2764 |
. . . . . . . 8
| |
| 13 | nfcv 2764 |
. . . . . . . 8
| |
| 14 | fnmpt2ovd.s |
. . . . . . . 8
| |
| 15 | 10, 11, 12, 13, 14 | cbvmpt2 6734 |
. . . . . . 7
|
| 16 | 15 | eqcomi 2631 |
. . . . . 6
|
| 17 | 16 | a1i 11 |
. . . . 5
|
| 18 | 17 | oveqd 6667 |
. . . 4
|
| 19 | 18 | eqeq2d 2632 |
. . 3
|
| 20 | 19 | 2ralbidv 2989 |
. 2
|
| 21 | simprl 794 |
. . . . 5
| |
| 22 | simprr 796 |
. . . . 5
| |
| 23 | fnmpt2ovd.d |
. . . . . 6
| |
| 24 | 23 | 3expb 1266 |
. . . . 5
|
| 25 | eqid 2622 |
. . . . . 6
| |
| 26 | 25 | ovmpt4g 6783 |
. . . . 5
|
| 27 | 21, 22, 24, 26 | syl3anc 1326 |
. . . 4
|
| 28 | 27 | eqeq2d 2632 |
. . 3
|
| 29 | 28 | 2ralbidva 2988 |
. 2
|
| 30 | 9, 20, 29 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: mpt2frlmd 20116 |
| Copyright terms: Public domain | W3C validator |