| Step | Hyp | Ref
| Expression |
| 1 | | offval22.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | | offval22.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 3 | | xpexg 6960 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| 4 | 1, 2, 3 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 5 | | xp1st 7198 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 × 𝐵) → (1st ‘𝑧) ∈ 𝐴) |
| 6 | | xp2nd 7199 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 × 𝐵) → (2nd ‘𝑧) ∈ 𝐵) |
| 7 | 5, 6 | jca 554 |
. . . 4
⊢ (𝑧 ∈ (𝐴 × 𝐵) → ((1st ‘𝑧) ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵)) |
| 8 | | fvex 6201 |
. . . . . 6
⊢
(2nd ‘𝑧) ∈ V |
| 9 | | fvex 6201 |
. . . . . 6
⊢
(1st ‘𝑧) ∈ V |
| 10 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑦(2nd ‘𝑧) |
| 11 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑥(2nd ‘𝑧) |
| 12 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑥(1st ‘𝑧) |
| 13 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) |
| 14 | | nfcsb1v 3549 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋(2nd ‘𝑧) / 𝑦⦌𝐶 |
| 15 | 14 | nfel1 2779 |
. . . . . . . 8
⊢
Ⅎ𝑦⦋(2nd ‘𝑧) / 𝑦⦌𝐶 ∈ V |
| 16 | 13, 15 | nfim 1825 |
. . . . . . 7
⊢
Ⅎ𝑦((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V) |
| 17 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝜑 ∧ (1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵) |
| 18 | | nfcsb1v 3549 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 |
| 19 | 18 | nfel1 2779 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V |
| 20 | 17, 19 | nfim 1825 |
. . . . . . 7
⊢
Ⅎ𝑥((𝜑 ∧ (1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵) →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V) |
| 21 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑧) → (𝑦 ∈ 𝐵 ↔ (2nd ‘𝑧) ∈ 𝐵)) |
| 22 | 21 | 3anbi3d 1405 |
. . . . . . . 8
⊢ (𝑦 = (2nd ‘𝑧) → ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵))) |
| 23 | | csbeq1a 3542 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑧) → 𝐶 = ⦋(2nd
‘𝑧) / 𝑦⦌𝐶) |
| 24 | 23 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑦 = (2nd ‘𝑧) → (𝐶 ∈ V ↔
⦋(2nd ‘𝑧) / 𝑦⦌𝐶 ∈ V)) |
| 25 | 22, 24 | imbi12d 334 |
. . . . . . 7
⊢ (𝑦 = (2nd ‘𝑧) → (((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ V) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V))) |
| 26 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑧) → (𝑥 ∈ 𝐴 ↔ (1st ‘𝑧) ∈ 𝐴)) |
| 27 | 26 | 3anbi2d 1404 |
. . . . . . . 8
⊢ (𝑥 = (1st ‘𝑧) → ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) ↔ (𝜑 ∧ (1st ‘𝑧) ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵))) |
| 28 | | csbeq1a 3542 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑧) →
⦋(2nd ‘𝑧) / 𝑦⦌𝐶 = ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶) |
| 29 | 28 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑥 = (1st ‘𝑧) →
(⦋(2nd ‘𝑧) / 𝑦⦌𝐶 ∈ V ↔
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V)) |
| 30 | 27, 29 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = (1st ‘𝑧) → (((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V) ↔ ((𝜑 ∧ (1st ‘𝑧) ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V))) |
| 31 | | offval22.c |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑋) |
| 32 | | elex 3212 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑋 → 𝐶 ∈ V) |
| 33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ V) |
| 34 | 10, 11, 12, 16, 20, 25, 30, 33 | vtocl2gf 3268 |
. . . . . 6
⊢
(((2nd ‘𝑧) ∈ V ∧ (1st ‘𝑧) ∈ V) → ((𝜑 ∧ (1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵) →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V)) |
| 35 | 8, 9, 34 | mp2an 708 |
. . . . 5
⊢ ((𝜑 ∧ (1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵) →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V) |
| 36 | 35 | 3expb 1266 |
. . . 4
⊢ ((𝜑 ∧ ((1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵)) →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V) |
| 37 | 7, 36 | sylan2 491 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 × 𝐵)) → ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶 ∈ V) |
| 38 | | nfcsb1v 3549 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋(2nd ‘𝑧) / 𝑦⦌𝐷 |
| 39 | 38 | nfel1 2779 |
. . . . . . . 8
⊢
Ⅎ𝑦⦋(2nd ‘𝑧) / 𝑦⦌𝐷 ∈ V |
| 40 | 13, 39 | nfim 1825 |
. . . . . . 7
⊢
Ⅎ𝑦((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V) |
| 41 | | nfcsb1v 3549 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 |
| 42 | 41 | nfel1 2779 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V |
| 43 | 17, 42 | nfim 1825 |
. . . . . . 7
⊢
Ⅎ𝑥((𝜑 ∧ (1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵) →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V) |
| 44 | | csbeq1a 3542 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑧) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑦⦌𝐷) |
| 45 | 44 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑦 = (2nd ‘𝑧) → (𝐷 ∈ V ↔
⦋(2nd ‘𝑧) / 𝑦⦌𝐷 ∈ V)) |
| 46 | 22, 45 | imbi12d 334 |
. . . . . . 7
⊢ (𝑦 = (2nd ‘𝑧) → (((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V))) |
| 47 | | csbeq1a 3542 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑧) →
⦋(2nd ‘𝑧) / 𝑦⦌𝐷 = ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷) |
| 48 | 47 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑥 = (1st ‘𝑧) →
(⦋(2nd ‘𝑧) / 𝑦⦌𝐷 ∈ V ↔
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V)) |
| 49 | 27, 48 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = (1st ‘𝑧) → (((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V) ↔ ((𝜑 ∧ (1st ‘𝑧) ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V))) |
| 50 | | offval22.d |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑌) |
| 51 | | elex 3212 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝑌 → 𝐷 ∈ V) |
| 52 | 50, 51 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ V) |
| 53 | 10, 11, 12, 40, 43, 46, 49, 52 | vtocl2gf 3268 |
. . . . . 6
⊢
(((2nd ‘𝑧) ∈ V ∧ (1st ‘𝑧) ∈ V) → ((𝜑 ∧ (1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵) →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V)) |
| 54 | 8, 9, 53 | mp2an 708 |
. . . . 5
⊢ ((𝜑 ∧ (1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵) →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V) |
| 55 | 54 | 3expb 1266 |
. . . 4
⊢ ((𝜑 ∧ ((1st
‘𝑧) ∈ 𝐴 ∧ (2nd
‘𝑧) ∈ 𝐵)) →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V) |
| 56 | 7, 55 | sylan2 491 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 × 𝐵)) → ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷 ∈ V) |
| 57 | | offval22.f |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| 58 | | mpt2mpts 7234 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶) |
| 59 | 57, 58 | syl6eq 2672 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶)) |
| 60 | | offval22.g |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| 61 | | mpt2mpts 7234 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷) |
| 62 | 60, 61 | syl6eq 2672 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷)) |
| 63 | 4, 37, 56, 59, 62 | offval2 6914 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷))) |
| 64 | | csbov12g 6689 |
. . . . . . 7
⊢
((2nd ‘𝑧) ∈ V →
⦋(2nd ‘𝑧) / 𝑦⦌(𝐶𝑅𝐷) = (⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(2nd ‘𝑧) / 𝑦⦌𝐷)) |
| 65 | 64 | csbeq2dv 3992 |
. . . . . 6
⊢
((2nd ‘𝑧) ∈ V →
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(𝐶𝑅𝐷) = ⦋(1st
‘𝑧) / 𝑥⦌(⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(2nd ‘𝑧) / 𝑦⦌𝐷)) |
| 66 | 8, 65 | ax-mp 5 |
. . . . 5
⊢
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(𝐶𝑅𝐷) = ⦋(1st
‘𝑧) / 𝑥⦌(⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(2nd ‘𝑧) / 𝑦⦌𝐷) |
| 67 | | csbov12g 6689 |
. . . . . 6
⊢
((1st ‘𝑧) ∈ V →
⦋(1st ‘𝑧) / 𝑥⦌(⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(2nd ‘𝑧) / 𝑦⦌𝐷) = (⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷)) |
| 68 | 9, 67 | ax-mp 5 |
. . . . 5
⊢
⦋(1st ‘𝑧) / 𝑥⦌(⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(2nd ‘𝑧) / 𝑦⦌𝐷) = (⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷) |
| 69 | 66, 68 | eqtr2i 2645 |
. . . 4
⊢
(⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷) = ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(𝐶𝑅𝐷) |
| 70 | 69 | mpteq2i 4741 |
. . 3
⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷)) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(𝐶𝑅𝐷)) |
| 71 | | mpt2mpts 7234 |
. . 3
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑅𝐷)) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(𝐶𝑅𝐷)) |
| 72 | 70, 71 | eqtr4i 2647 |
. 2
⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (⦋(1st
‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐶𝑅⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌𝐷)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑅𝐷)) |
| 73 | 63, 72 | syl6eq 2672 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑅𝐷))) |